Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, Illinois 60439, United States.
J Am Chem Soc. 2022 Sep 14;144(36):16395-16409. doi: 10.1021/jacs.2c04292. Epub 2022 Aug 30.
Flavodiiron nitric oxide reductases (FNORs), found in pathogenic bacteria, are capable of reducing nitric oxide (NO) to nitrous oxide (NO) to detoxify NO released by the human immune system. Previously, we reported the first FNOR model system that mediates direct NO reduction (Dong, H. T.; 2018, 140, 13429-13440), but no intermediate of the reaction could be characterized. Here, we present a new set of model complexes that, depending on the ligand substitution, can either mediate direct NO reduction or stabilize a highly activated high-spin (hs) {FeNO} complex, the first intermediate of the reaction. The precursors, [{Fe(MPA-(RPhO))}] (, R = H and , R = Bu, Me), were prepared first and fully characterized. Complex (without steric protection) directly reduces NO to NO almost quantitatively, which constitutes only the second example of this reaction in model systems. Contrarily, the reaction of sterically protected with NO forms the stable mononitrosyl complex , which shows one of the lowest N-O stretching frequencies (1689 cm) observed so far for a mononuclear hs-{FeNO} complex. This study confirms that an N-O stretch ≤1700 cm represents the appropriate level of activation of the FeNO unit to enable direct NO reduction. The higher activation level of these hs-{FeNO} complexes required for NO reduction compared to those formed in FNORs emphasizes the importance of hydrogen bonding residues in the active sites of FNORs to activate the bound NO ligands for direct N-N coupling and NO formation. The implications of these results for FNORs are further discussed.
Flavodiiron 一氧化氮还原酶 (FNORs) 存在于致病细菌中,能够将一氧化氮 (NO) 还原为一氧化二氮 (N2O),以解毒人体免疫系统释放的 NO。此前,我们报道了第一个介导直接 NO 还原的 FNOR 模型体系(Dong, H. T.; 2018, 140, 13429-13440),但无法对反应的中间产物进行表征。在此,我们提出了一组新的模型配合物,根据配体取代,可以介导直接的 NO 还原,或者稳定一个高活性的高自旋(hs){FeNO}配合物,这是反应的第一个中间产物。前体 [{Fe(MPA-(RPhO))}](,R = H 和 ,R = Bu,Me)首先被制备并进行了充分的表征。配合物 (没有空间位阻保护)直接将 NO 还原为几乎定量的 N2O,这在模型体系中是第二次发生这种反应的实例。相反,受空间位阻保护的 与 NO 反应形成稳定的单硝酰配合物 ,其 N-O 伸缩振动频率(1689 cm)是迄今为止观察到的单核 hs-{FeNO}配合物中最低的之一。这项研究证实,FeNO 单元的 N-O 伸缩振动频率≤1700 cm 代表了适当的活化水平,可以实现直接的 NO 还原。与 FNORs 中形成的那些相比,这些 hs-{FeNO}配合物还原 NO 所需的更高的活化水平强调了 FNORs 活性位点中氢键残基的重要性,这些残基可以激活结合的 NO 配体以进行直接的 N-N 偶联和 NO 的形成。进一步讨论了这些结果对 FNORs 的影响。