Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
Bioinformatics. 2022 Oct 14;38(20):4829-4830. doi: 10.1093/bioinformatics/btac567.
With the advent of high-throughput sequencing in molecular biology and medicine, the need for scalable statistical solutions for modeling complex biological systems has become of critical importance. The increasing number of platforms and possible experimental scenarios raised the problem of integrating large amounts of new heterogeneous data and current knowledge, to test novel hypotheses and improve our comprehension of physiological processes and diseases.
Combining network analysis and causal inference within the framework of structural equation modeling (SEM), we developed the R package SEMgraph. It provides a fully automated toolkit, managing complex biological systems as multivariate networks, ensuring robustness and reproducibility through data-driven evaluation of model architecture and perturbation, which is readily interpretable in terms of causal effects among system components.
SEMgraph package is available at https://cran.r-project.org/web/packages/SEMgraph.
Supplementary data are available at Bioinformatics online.
随着高通量测序在分子生物学和医学中的出现,对于可扩展的统计解决方案来建模复杂生物系统的需求变得至关重要。越来越多的平台和可能的实验场景提出了整合大量新的异构数据和现有知识的问题,以检验新的假设并提高我们对生理过程和疾病的理解。
我们结合网络分析和因果推断在结构方程建模 (SEM) 的框架内,开发了 R 包 SEMgraph。它提供了一个完全自动化的工具包,将复杂的生物系统作为多元网络进行管理,通过对模型结构和扰动进行数据驱动的评估来确保稳健性和可重复性,这可以根据系统组件之间的因果效应进行解释。
SEMgraph 包可在 https://cran.r-project.org/web/packages/SEMgraph 上获得。
补充数据可在 Bioinformatics 在线获得。