Suppr超能文献

SEMgraph:一个用于使用结构方程模型对高通量数据进行因果网络推断的 R 包。

SEMgraph: an R package for causal network inference of high-throughput data with structural equation models.

机构信息

Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.

出版信息

Bioinformatics. 2022 Oct 14;38(20):4829-4830. doi: 10.1093/bioinformatics/btac567.

Abstract

MOTIVATION

With the advent of high-throughput sequencing in molecular biology and medicine, the need for scalable statistical solutions for modeling complex biological systems has become of critical importance. The increasing number of platforms and possible experimental scenarios raised the problem of integrating large amounts of new heterogeneous data and current knowledge, to test novel hypotheses and improve our comprehension of physiological processes and diseases.

RESULTS

Combining network analysis and causal inference within the framework of structural equation modeling (SEM), we developed the R package SEMgraph. It provides a fully automated toolkit, managing complex biological systems as multivariate networks, ensuring robustness and reproducibility through data-driven evaluation of model architecture and perturbation, which is readily interpretable in terms of causal effects among system components.

AVAILABILITY AND IMPLEMENTATION

SEMgraph package is available at https://cran.r-project.org/web/packages/SEMgraph.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

随着高通量测序在分子生物学和医学中的出现,对于可扩展的统计解决方案来建模复杂生物系统的需求变得至关重要。越来越多的平台和可能的实验场景提出了整合大量新的异构数据和现有知识的问题,以检验新的假设并提高我们对生理过程和疾病的理解。

结果

我们结合网络分析和因果推断在结构方程建模 (SEM) 的框架内,开发了 R 包 SEMgraph。它提供了一个完全自动化的工具包,将复杂的生物系统作为多元网络进行管理,通过对模型结构和扰动进行数据驱动的评估来确保稳健性和可重复性,这可以根据系统组件之间的因果效应进行解释。

可用性和实现

SEMgraph 包可在 https://cran.r-project.org/web/packages/SEMgraph 上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验