Suppr超能文献

使用有向无环图进行稳健的因果推断:R包“dagitty”

Robust causal inference using directed acyclic graphs: the R package 'dagitty'.

作者信息

Textor Johannes, van der Zander Benito, Gilthorpe Mark S, Liskiewicz Maciej, Ellison George Th

机构信息

Department of Tumour Immunology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.

Institute for Theoretical Computer Science, University of Luebeck, Luebeck, Germany.

出版信息

Int J Epidemiol. 2016 Dec 1;45(6):1887-1894. doi: 10.1093/ije/dyw341.

Abstract

Directed acyclic graphs (DAGs), which offer systematic representations of causal relationships, have become an established framework for the analysis of causal inference in epidemiology, often being used to determine covariate adjustment sets for minimizing confounding bias. DAGitty is a popular web application for drawing and analysing DAGs. Here we introduce the R package 'dagitty', which provides access to all of the capabilities of the DAGitty web application within the R platform for statistical computing, and also offers several new functions. We describe how the R package 'dagitty' can be used to: evaluate whether a DAG is consistent with the dataset it is intended to represent; enumerate 'statistically equivalent' but causally different DAGs; and identify exposure-outcome adjustment sets that are valid for causally different but statistically equivalent DAGs. This functionality enables epidemiologists to detect causal misspecifications in DAGs and make robust inferences that remain valid for a range of different DAGs. The R package 'dagitty' is available through the comprehensive R archive network (CRAN) at [https://cran.r-project.org/web/packages/dagitty/]. The source code is available on github at [https://github.com/jtextor/dagitty]. The web application 'DAGitty' is free software, licensed under the GNU general public licence (GPL) version 2 and is available at [http://dagitty.net/].

摘要

有向无环图(DAGs)能够系统地表示因果关系,已成为流行病学因果推断分析的既定框架,常用于确定协变量调整集以最小化混杂偏倚。DAGitty是一款用于绘制和分析DAGs的流行网络应用程序。在此,我们介绍R包“dagitty”,它能在用于统计计算的R平台内实现DAGitty网络应用程序的所有功能,还提供了几个新函数。我们描述了如何使用R包“dagitty”来:评估一个DAG是否与其 intended to represent的数据集一致;枚举“统计等效”但因果关系不同的DAG;识别对因果关系不同但统计等效的DAG有效的暴露-结局调整集。此功能使流行病学家能够检测DAG中的因果错误设定,并做出对一系列不同DAG都有效的稳健推断。R包“dagitty”可通过综合R存档网络(CRAN)在[https://cran.r-project.org/web/packages/dagitty/]获取。源代码可在github上的[https://github.com/jtextor/dagitty]获取。网络应用程序“DAGitty”是免费软件,根据GNU通用公共许可证(GPL)第2版授权,可在[http://dagitty.net/]获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验