Lue Chia-Hua, Abram Paul K, Hrcek Jan, Buffington Matthew L, Staniczenko Phillip P A
Department of Biology, Brooklyn College, City University of New York, New York City, New York, USA.
Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, British Columbia, Canada.
Mol Ecol. 2023 Dec;32(23):6461-6473. doi: 10.1111/mec.16677. Epub 2022 Sep 12.
Metabarcoding is revolutionizing fundamental research in ecology by enabling large-scale detection of species and producing data that are rich with community context. However, the benefits of metabarcoding have yet to be fully realized in fields of applied ecology, especially those such as classical biological control (CBC) research that involve hyperdiverse taxa. Here, we discuss some of the opportunities that metabarcoding provides CBC and solutions to the main methodological challenges that have limited the integration of metabarcoding in existing CBC workflows. We focus on insect parasitoids, which are popular and effective biological control agents (BCAs) of invasive species and agricultural pests. Accurately identifying native, invasive and BCA species is paramount, since misidentification can undermine control efforts and lead to large negative socio-economic impacts. Unfortunately, most existing publicly accessible genetic databases cannot be used to reliably identify parasitoid species, thereby limiting the accuracy of metabarcoding in CBC research. To address this issue, we argue for the establishment of authoritative genetic databases that link metabarcoding data to taxonomically identified specimens. We further suggest using multiple genetic markers to reduce primer bias and increase taxonomic resolution. We also provide suggestions for biological control-specific metabarcoding workflows intended to track the long-term effectiveness of introduced BCAs. Finally, we use the example of an invasive pest, Drosophila suzukii, in a reflective "what if" thought experiment to explore the potential power of community metabarcoding in CBC.
元条形码技术正在彻底改变生态学的基础研究,它能够大规模检测物种,并生成包含丰富群落背景信息的数据。然而,元条形码技术的优势在应用生态学领域尚未得到充分发挥,尤其是在诸如经典生物防治(CBC)研究等涉及高度多样化分类群的领域。在此,我们讨论元条形码技术为CBC带来的一些机遇,以及解决那些限制元条形码技术融入现有CBC工作流程的主要方法学挑战的方案。我们聚焦于昆虫寄生蜂,它们是入侵物种和农业害虫常用且有效的生物防治剂(BCAs)。准确识别本地物种、入侵物种和BCA物种至关重要,因为错误识别可能会破坏防治工作,并导致巨大的负面社会经济影响。不幸的是,大多数现有的可公开获取的遗传数据库无法用于可靠地识别寄生蜂物种,从而限制了元条形码技术在CBC研究中的准确性。为解决这一问题,我们主张建立权威的遗传数据库,将元条形码数据与经过分类鉴定的标本相联系。我们还建议使用多种遗传标记来减少引物偏差并提高分类分辨率。我们还为旨在追踪引入的BCAs长期有效性的生物防治特定元条形码工作流程提供了建议。最后,我们以一种入侵害虫铃木果蝇为例,在一个反思性的“如果……会怎样”思维实验中,探索群落元条形码技术在CBC中的潜在力量。