Suppr超能文献

实施高通量昆虫监测 DNA 代谢组学的前景与挑战。

Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance.

机构信息

Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora 3083, VIC, Australia.

School of Applied Systems Biology, La Trobe University, Bundoora 3083, VIC, Australia.

出版信息

Gigascience. 2019 Aug 1;8(8). doi: 10.1093/gigascience/giz092.

Abstract

Trap-based surveillance strategies are widely used for monitoring of invasive insect species, aiming to detect newly arrived exotic taxa as well as track the population levels of established or endemic pests. Where these surveillance traps have low specificity and capture non-target endemic species in excess of the target pests, the need for extensive specimen sorting and identification creates a major diagnostic bottleneck. While the recent development of standardized molecular diagnostics has partly alleviated this requirement, the single specimen per reaction nature of these methods does not readily scale to the sheer number of insects trapped in surveillance programmes. Consequently, target lists are often restricted to a few high-priority pests, allowing unanticipated species to avoid detection and potentially establish populations. DNA metabarcoding has recently emerged as a method for conducting simultaneous, multi-species identification of complex mixed communities and may lend itself ideally to rapid diagnostics of bulk insect trap samples. Moreover, the high-throughput nature of recent sequencing platforms could enable the multiplexing of hundreds of diverse trap samples on a single flow cell, thereby providing the means to dramatically scale up insect surveillance in terms of both the quantity of traps that can be processed concurrently and number of pest species that can be targeted. In this review of the metabarcoding literature, we explore how DNA metabarcoding could be tailored to the detection of invasive insects in a surveillance context and highlight the unique technical and regulatory challenges that must be considered when implementing high-throughput sequencing technologies into sensitive diagnostic applications.

摘要

陷阱监测策略广泛应用于入侵昆虫物种的监测,旨在发现新到达的外来分类群,并跟踪已建立或地方性害虫的种群水平。在这些监测陷阱特异性低,捕获的非目标地方性物种超过目标害虫的情况下,广泛的标本分类和鉴定的需求造成了一个主要的诊断瓶颈。虽然最近标准化分子诊断的发展在一定程度上缓解了这一需求,但这些方法每个反应仅针对一个标本的性质,不易扩展到监测计划中捕获的大量昆虫。因此,目标清单通常仅限于少数几个高优先级害虫,允许意外的物种逃避检测并可能建立种群。DNA 代谢组学最近作为一种用于复杂混合群落的同时、多物种鉴定的方法出现,并且可能非常适合于快速诊断大量昆虫陷阱样本。此外,最近测序平台的高通量特性可以使数百个不同的陷阱样本在单个流动池上进行多重化,从而提供了一种手段,可以在同时处理的陷阱数量和可以针对的害虫物种数量方面大大扩大昆虫监测。在对代谢组学文献的回顾中,我们探讨了 DNA 代谢组学如何能够适应监测背景下入侵昆虫的检测,并强调了在将高通量测序技术应用于敏感诊断应用时必须考虑的独特技术和监管挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e92/6667344/47f0fc79f18b/giz092fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验