Suppr超能文献

基于动态自适应功能连接的深度时空注意力循环网络用于 MCI 识别。

Deep Spatio-Temporal Attention-Based Recurrent Network From Dynamic Adaptive Functional Connectivity for MCI Identification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:2600-2612. doi: 10.1109/TNSRE.2022.3202713. Epub 2022 Sep 20.

Abstract

Most existing methods of constructing dynamic functional connectivity (dFC) network obtain the connectivity strength via the sliding window correlation (SWC) method, which estimates the connectivity strength at each time segment, rather than at each time point, and thus is difficult to produce accurate dFC network due to the influence of the window type and window width. Furthermore, the deep learning methods may not capture the discriminative spatio-temporal information that is closely related to disease, thus impacting the performance of mild cognitive impairment (MCI) identification. In this paper, a novel spatio-temporal attention-based bidirectional gated recurrent unit (STA-BiGRU) network is proposed to extract inherent spatio-temporal information from a dynamic adaptive functional connectivity (dAFC) network for MCI diagnosis. Specifically, we adopt a group lasso-based Kalman filter algorithm to obtain the dAFC network with more accurate connectivity strength at each time step. Then a spatial attention module with self-attention and a temporal attention module with multiple temporal attention vectors are incorporated into the BiGRU network to extract more discriminative disease-related spatio-temporal information. Finally, the spatio-temporal regularizations are employed to better guide the attention learning of STA-BiGRU network to enhance the robustness of the deep network. Experimental results show that the proposed framework achieves mean accuracies of 90.2%, 90.0%, and 81.5%, respectively, for three MCI classification tasks. This study provides a more effective deep spatio-temporal attention-based recurrent network and obtains good performance and interpretability of deep learning for psychiatry diagnosis research.

摘要

大多数构建动态功能连接(dFC)网络的现有方法都是通过滑动窗口相关(SWC)方法来获取连接强度,该方法在每个时间片段而不是每个时间点估计连接强度,因此由于窗口类型和窗口宽度的影响,很难产生准确的 dFC 网络。此外,深度学习方法可能无法捕获与疾病密切相关的有区别的时空信息,从而影响轻度认知障碍(MCI)识别的性能。在本文中,提出了一种新颖的基于时空注意力的双向门控循环单元(STA-BiGRU)网络,用于从动态自适应功能连接(dAFC)网络中提取用于 MCI 诊断的固有时空信息。具体来说,我们采用基于组套索的卡尔曼滤波算法来获得每个时间步具有更准确连接强度的 dAFC 网络。然后,将具有自注意力的空间注意力模块和具有多个时间注意力向量的时间注意力模块合并到 BiGRU 网络中,以提取更具区分性的疾病相关时空信息。最后,采用时空正则化来更好地指导 STA-BiGRU 网络的注意力学习,以增强深度网络的鲁棒性。实验结果表明,所提出的框架在三个 MCI 分类任务中分别实现了 90.2%、90.0%和 81.5%的平均准确率。该研究提供了一种更有效的基于深度时空注意力的递归网络,并为精神病学诊断研究获得了良好的性能和可解释性的深度学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验