IEEE Trans Med Imaging. 2020 Sep;39(9):2818-2830. doi: 10.1109/TMI.2020.2976825. Epub 2020 Feb 27.
Dynamic functional connectivity (dFC) analysis using resting-state functional Magnetic Resonance Imaging (rs-fMRI) is currently an advanced technique for capturing the dynamic changes of neural activities in brain disease identification. Most existing dFC modeling methods extract dynamic interaction information by using the sliding window-based correlation, whose performance is very sensitive to window parameters. Because few studies can convincingly identify the optimal combination of window parameters, sliding window-based correlation may not be the optimal way to capture the temporal variability of brain activity. In this paper, we propose a novel adaptive dFC model, aided by a deep spatial-temporal feature fusion method, for mild cognitive impairment (MCI) identification. Specifically, we adopt an adaptive Ultra-weighted-lasso recursive least squares algorithm to estimate the adaptive dFC, which effectively alleviates the problem of parameter optimization. Then, we extract temporal and spatial features from the adaptive dFC. In order to generate coarser multi-domain representations for subsequent classification, the temporal and spatial features are further mapped into comprehensive fused features with a deep feature fusion method. Experimental results show that the classification accuracy of our proposed method is reached to 87.7%, which is at least 5.5% improvement than the state-of-the-art methods. These results elucidate the superiority of the proposed method for MCI classification, indicating its effectiveness in the early identification of brain abnormalities.
基于静息态功能磁共振成像(rs-fMRI)的动态功能连接(dFC)分析是目前一种用于识别脑疾病中神经活动动态变化的先进技术。大多数现有的 dFC 建模方法通过使用基于滑动窗口的相关性来提取动态交互信息,其性能对窗口参数非常敏感。由于很少有研究能够令人信服地确定窗口参数的最佳组合,因此基于滑动窗口的相关性可能不是捕获脑活动时间变异性的最佳方法。在本文中,我们提出了一种新的自适应 dFC 模型,通过深度时空特征融合方法辅助,用于轻度认知障碍(MCI)识别。具体来说,我们采用自适应 Ultra-weighted-lasso 递归最小二乘法来估计自适应 dFC,这有效地缓解了参数优化问题。然后,我们从自适应 dFC 中提取时间和空间特征。为了生成后续分类的更粗的多域表示,我们使用深度特征融合方法将时间和空间特征进一步映射到综合融合特征中。实验结果表明,我们提出的方法的分类精度达到 87.7%,至少比最先进的方法提高了 5.5%。这些结果说明了我们提出的方法在 MCI 分类中的优越性,表明其在早期识别大脑异常方面的有效性。