IEEE Trans Neural Syst Rehabil Eng. 2024;32:3328-3337. doi: 10.1109/TNSRE.2024.3450443. Epub 2024 Sep 16.
Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used in the identification of mild cognitive impairment (MCI) research, MCI patients are relatively at a higher risk of progression to Alzheimer's disease (AD). However, almost machine learning and deep learning methods are rarely analyzed from the perspective of spatial structure and temporal dimension. In order to make full use of rs-fMRI data, this study constructed a dynamic spatiotemporal graph neural network model, which mainly includes three modules: temporal block, spatial block, and graph pooling block. Our proposed model can extract the BOLD signal of the subject's fMRI data and the spatial structure of functional connections between different brain regions, and improve the decision-making results of the model. In the study of AD, MCI and NC, the classification accuracy reached 83.78% outperforming previously reported, which manifested that our model could effectively learn spatiotemporal, and dynamic spatio-temporal method plays an important role in identifying different groups of subjects. In summary, this paper proposed an end-to-end dynamic spatio-temporal graph neural network model, which uses the information of the temporal dimension and spatial structure in rs-fMRI data, and achieves the improvement of the three classification performance among AD, MCI and NC.
静息态功能磁共振成像(rs-fMRI)已广泛应用于轻度认知障碍(MCI)的研究识别中,MCI 患者向阿尔茨海默病(AD)进展的风险相对较高。然而,几乎没有机器学习和深度学习方法从空间结构和时间维度进行分析。为了充分利用 rs-fMRI 数据,本研究构建了一个动态时空图神经网络模型,主要包括三个模块:时间块、空间块和图池块。我们提出的模型可以提取被试 fMRI 数据的 BOLD 信号和不同脑区之间功能连接的空间结构,并提高模型的决策结果。在 AD、MCI 和 NC 的研究中,分类准确率达到 83.78%,优于之前的报道,表明我们的模型能够有效地学习时空动态信息,时空动态方法在识别不同组别的被试方面发挥着重要作用。总之,本文提出了一种端到端的动态时空图神经网络模型,该模型利用了 rs-fMRI 数据中的时间维度和空间结构信息,提高了 AD、MCI 和 NC 三种分类性能。