Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
AAPS J. 2022 Aug 30;24(5):96. doi: 10.1208/s12248-022-00739-5.
In pharmacokinetic (PK) analyses, the biological half-life T is usually determined in the terminal phase after drug administration, which is readily calculated from the relationship T = ln2/λ where λ is the terminal-phase slope obtainable from non-compartmental analysis (NCA). Since kinetic understanding of λ has been limited to the theory of a one-compartment model, this study seeks kinetic determinants of λ in more complex plasma concentration-time profiles. We utilized physiologically based pharmacokinetic (PBPK) systems that are consistent with the assumptions of NCA (e.g., linear PK and elimination occurring from plasma) to interrelate λ and disposition kinetic parameters of PBPK models. In a mammillary form of PBPK models, the two boundary conditions of λ are the inverses of the mean residence time in the body (1/MRT = CL/V) and the mean transit time through the kinetically largest tissue (1/MTT = QfR/VK). Importantly, the limiting conditions of λ between 1/MRT and 1/MTT are dependent on a simple product MRTλ (P) and a simple ratio MTT/MRT (K), leading to introduction of the unitless product-ratio plot for determination of the limiting condition of λ in linear PK. We found that the MRTλ value of 0.5 serves as a practical threshold determining whether λ is more closely associated with 1/MRT or 1/MTT. The current theory was applied for assessment of the terminal slope λ for observed PK data of various compounds in man and rat.
在药代动力学 (PK) 分析中,T 通常在给药后的末端相确定,可通过关系式 T = ln2/λ 从非房室分析 (NCA) 中获得的末端相斜率 λ 中直接计算得到。由于对 λ 的动力学理解仅限于单室模型理论,因此本研究旨在探讨更复杂的血浆浓度-时间曲线中 λ 的动力学决定因素。我们利用与 NCA 假设一致的生理相关药代动力学 (PBPK) 系统(例如,线性 PK 和从血浆中发生的消除),以将 λ 与 PBPK 模型的处置动力学参数相关联。在 PBPK 模型的乳突形式中,λ 的两个边界条件是体内平均驻留时间的倒数 (1/MRT = CL/V) 和通过动力学上最大组织的平均转运时间的倒数 (1/MTT = QfR/VK)。重要的是,1/MRT 和 1/MTT 之间 λ 的限制条件取决于简单的乘积 MRTλ (P) 和简单的比值 MTT/MRT (K),从而引入无单位的产物-比值图来确定线性 PK 中 λ 的限制条件。我们发现,0.5 的 MRTλ 值是一个实用的阈值,用于确定 λ 是否与 1/MRT 或 1/MTT 更密切相关。目前的理论被应用于评估各种化合物在人和大鼠中的观察到的 PK 数据的末端斜率 λ。