Suppr超能文献

一种用于解决伊辛形式的组合优化问题的树形搜索算法。

A tree search algorithm towards solving Ising formulated combinatorial optimization problems.

作者信息

Cen Yunuo, Das Debasis, Fong Xuanyao

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.

出版信息

Sci Rep. 2022 Aug 30;12(1):14755. doi: 10.1038/s41598-022-19102-x.

Abstract

Simulated annealing (SA) attracts more attention among classical heuristic algorithms because many combinatorial optimization problems can be easily recast as the ground state search problem of the Ising Hamiltonian. However, for practical implementation, the annealing process cannot be arbitrarily slow and hence, it may deviate from the expected stationary Boltzmann distribution and become trapped in a local energy minimum. To overcome this problem, this paper proposes a heuristic search algorithm by expanding search space from a Markov chain to a recursive depth limited tree based on SA, where the parent and child nodes represent the current and future spin states. At each iteration, the algorithm selects the best near-optimal solution within the feasible search space by exploring along the tree in the sense of "look ahead". Furthermore, motivated by the coherent Ising machine (CIM), the discrete representation of spin states is relaxed to a continuous representation with a regularization term, which enables the use of the reduced dynamics of the oscillators to explore the surrounding neighborhood of the selected tree nodes. We tested our algorithm on a representative NP-hard problem (MAX-CUT) to illustrate the effectiveness of the proposed algorithm compared to semi-definite programming (SDP), SA, and simulated CIM. Our results show that with the primal heuristics SA and CIM, our high-level tree search strategy is able to provide solutions within fewer epochs for Ising formulated combinatorial optimization problems.

摘要

模拟退火(SA)在经典启发式算法中备受关注,因为许多组合优化问题都可以轻松转化为伊辛哈密顿量的基态搜索问题。然而,在实际应用中,退火过程不能任意缓慢,因此,它可能会偏离预期的平稳玻尔兹曼分布,并陷入局部能量最小值。为了克服这个问题,本文提出了一种启发式搜索算法,该算法基于SA将搜索空间从马尔可夫链扩展到递归深度受限树,其中父节点和子节点分别表示当前和未来的自旋状态。在每次迭代中,该算法通过在“向前看”的意义上沿着树进行探索,在可行搜索空间内选择最佳的近似最优解。此外,受相干伊辛机(CIM)的启发,自旋状态的离散表示被放宽为带有正则项的连续表示,这使得能够利用振荡器的简化动力学来探索所选树节点的周围邻域。我们在一个具有代表性的NP难问题(最大割问题)上测试了我们的算法,以说明与半定规划(SDP)、SA和模拟CIM相比,所提出算法的有效性。我们的结果表明,使用原始启发式算法SA和CIM,我们的高级树搜索策略能够在更少的轮次内为伊辛形式的组合优化问题提供解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d7a/9427840/f591f4adc543/41598_2022_19102_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验