Suppr超能文献

基于 RGB 图像算法的植被覆盖度测量的适应性研究。

Adaptiveness of RGB-image derived algorithms in the measurement of fractional vegetation coverage.

机构信息

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

BMC Bioinformatics. 2022 Aug 30;23(1):358. doi: 10.1186/s12859-022-04886-6.

Abstract

BACKGROUND

Fractional vegetation coverage (FVC) is a crucial parameter in determining vegetation structure. Automatic measurement of FVC using digital images captured by mobile smart devices is a potential direction for future research on field survey methods in plant ecology, and this algorithm is crucial for accurate FVC measurement. However, there is a lack of insight into the influence of illumination on the accuracy of FVC measurements. Therefore, the main objective of this research is to assess the adaptiveness and performance of different algorithms under varying light conditions for FVC measurements and to deepen our understanding of the influence of illumination on FVC measurement.

METHODS AND RESULTS

Based on a literature survey, we selected four algorithms that have been reported to have high accuracy in automatic FVC measurements. The first algorithm (Fun01) identifies green plants based on the combination of [Formula: see text], [Formula: see text], and [Formula: see text] ([Formula: see text], [Formula: see text], and [Formula: see text] are the actual pixel digital numbers from the images based on each RGB channel, [Formula: see text] is the abbreviation of the Excess Green index), the second algorithm (Fun02) is a decision tree that uses color properties to discriminate plants from the background, the third algorithm (Fun03) uses [Formula: see text] ([Formula: see text] is the abbreviation of the Excess Red index) to recognize plants in the image, and the fourth algorithm (Fun04) uses [Formula: see text] and [Formula: see text] to separate the plants from the background. [Formula: see text] is an algorithm used to determine a threshold to transform the image into a binary image for the vegetation and background. We measured the FVC of several surveyed quadrats using these four algorithms under three scenarios, namely overcast sky, solar forenoon, and solar noon. FVC values obtained using the Photoshop-assisted manual identification method were used as a reference to assess the accuracy of the four algorithms selected. Results indicate that under the overcast sky scenario, Fun01 was more accurate than the other algorithms and the MAPE (mean absolute percentage error), BIAS, relBIAS (relative BIAS), RMSE (root mean square error), and relRMSE (relative RMSE) are 8.68%, 1.3, 3.97, 3.13, and 12.33%, respectively. Under the scenario of the solar forenoon, Fun02 (decision tree) was more accurate than other algorithms, and the MAPE, BIAS, relBIAS, RMSE, and relRMSE are 22.70%, - 2.86, - 7.70, 5.00, and 41.23%. Under the solar noon scenario, Fun02 was also more accurate than the other algorithms, and the MAPE, BIAS, relBIAS, RMSE, and relRMSE are 20.60%, - 6.39, - 20.67, 7.30, and 24.49%, respectively.

CONCLUSIONS

Given that each algorithm has its own optimal application scenario, among the four algorithms selected, Fun01 (the combination of [Formula: see text], [Formula: see text], and [Formula: see text]) can be recommended for measuring FVC on cloudy days. Fun02 (decision tree) is more suitable for measuring the FVC on sunny days. However, it considerably underestimates the FVC in most cases. We expect the findings of this study to serve as a useful reference for automatic vegetation cover measurements.

摘要

背景

植被分数覆盖(FVC)是确定植被结构的关键参数。使用移动智能设备拍摄的数字图像自动测量 FVC 是植物生态学野外调查方法未来研究的一个潜在方向,而该算法对于准确测量 FVC 至关重要。然而,对于光照对 FVC 测量精度的影响,我们知之甚少。因此,本研究的主要目的是评估不同算法在不同光照条件下进行 FVC 测量的适应性和性能,并深入了解光照对 FVC 测量的影响。

方法和结果

基于文献调查,我们选择了四种已报道在自动 FVC 测量中具有高精度的算法。第一种算法(Fun01)基于[Formula: see text]、[Formula: see text]和[Formula: see text]([Formula: see text]、[Formula: see text]和[Formula: see text]分别是基于每个 RGB 通道的图像的实际像素数字,[Formula: see text]是多余绿色指数的缩写)的组合来识别绿色植物,第二种算法(Fun02)是一种使用颜色属性来区分植物和背景的决策树,第三种算法(Fun03)使用[Formula: see text]([Formula: see text]是多余红色指数的缩写)来识别图像中的植物,第四种算法(Fun04)使用[Formula: see text]和[Formula: see text]将植物与背景分开。[Formula: see text]是一种用于确定阈值的算法,用于将图像转换为用于植被和背景的二进制图像。我们在三种情况下(阴天、晴天上午和晴天中午)使用这四种算法测量了几个调查样方的 FVC。使用 Photoshop 辅助手动识别方法获得的 FVC 值作为评估所选四种算法准确性的参考。结果表明,在阴天情况下,Fun01 比其他算法更准确,平均绝对百分比误差(MAPE)、偏差(BIAS)、相对 BIAS(relBIAS)、均方根误差(RMSE)和相对 RMSE(relRMSE)分别为 8.68%、1.3、3.97、3.13 和 12.33%。在晴天上午的情况下,Fun02(决策树)比其他算法更准确,MAPE、BIAS、relBIAS、RMSE 和 relRMSE 分别为 22.70%、-2.86%、-7.70%、5.00%和 41.23%。在晴天中午的情况下,Fun02 也比其他算法更准确,MAPE、BIAS、relBIAS、RMSE 和 relRMSE 分别为 20.60%、-6.39%、-20.67%、7.30%和 24.49%。

结论

鉴于每种算法都有其最佳的应用场景,在所选择的四种算法中,Fun01([Formula: see text]、[Formula: see text]和[Formula: see text]的组合)可推荐用于阴天测量 FVC。Fun02(决策树)更适合晴天测量 FVC。然而,它在大多数情况下会大大低估 FVC。我们希望本研究的结果能为自动植被覆盖测量提供有用的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccbe/9429463/3de571ca1318/12859_2022_4886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验