Suppr超能文献

使用自动区域设计来开发癌症报告的地理区域。

Developing Geographic Areas for Cancer Reporting Using Automated Zone Design.

作者信息

Tatalovich Zaria, Stinchcomb David G, Ng Diane, Yu Mandi, Lewis Denise R, Zhu Li, Feuer Eric J Rocky

出版信息

Am J Epidemiol. 2022 Nov 19;191(12):2109-2119. doi: 10.1093/aje/kwac155.

Abstract

The reporting and analysis of population-based cancer statistics in the United States has traditionally been done for counties. However, counties are not ideal for analysis of cancer rates, due to wide variation in population size, with larger counties having considerable sociodemographic variation within their borders and sparsely populated counties having less reliable estimates of cancer rates that are often suppressed due to confidentiality concerns. There is a need and an opportunity to utilize zone design procedures in the context of cancer surveillance to generate coherent, statistically stable geographic units that are more optimal for cancer reporting and analysis than counties. To achieve this goal, we sought to create areas within each US state that are: 1) similar in population size and large enough to minimize rate suppression; 2) sociodemographically homogeneous; 3) compact; and 4) custom crafted to represent areas that are meaningful to cancer registries and stakeholders. The resulting geographic units reveal the heterogeneity of rates that are hidden when reported at the county-level while substantially reducing the need to suppress data. We believe this effort will facilitate more meaningful comparative analysis of cancer rates for small geographic areas and will advance the understanding of cancer burden in the United States.

摘要

在美国,基于人群的癌症统计数据的报告和分析传统上是针对县进行的。然而,县并不适合用于癌症发病率分析,这是因为人口规模差异很大,较大的县境内存在相当大的社会人口统计学差异,而人口稀少的县对癌症发病率的估计往往不太可靠,这些估计常常因保密问题而被压制。在癌症监测的背景下,有必要且有机会利用区域设计程序来生成连贯、统计稳定的地理单元,这些单元比县更适合用于癌症报告和分析。为实现这一目标,我们试图在美国每个州内创建这样的区域:1)人口规模相似且足够大,以尽量减少发病率压制;2)社会人口统计学上同质;3)紧凑;4)经过定制,以代表对癌症登记处和利益相关者有意义的区域。由此产生的地理单元揭示了在县级报告时隐藏的发病率异质性,同时大幅减少了压制数据的必要性。我们相信,这项工作将有助于对小地理区域的癌症发病率进行更有意义的比较分析,并将推动对美国癌症负担的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验