Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):40469-40480. doi: 10.1021/acsami.1c24095. Epub 2022 Aug 31.
The study of the interactions of living adherent cells with mechanically stable (visco)elastic materials enables understanding and exploitation of physiological phenomena mediated by cell-extracellular communication. Insights into the interaction of cells and surrounding objects with different stability patterns upon cell contact might unveil biological responses to engineer innovative applications. Here, we hypothesize that the efficiency of cell attachment, spreading, and movement across a free-packed granular bed of microparticles depends on the microparticle diameter, raising the possibility of a necessary minimum traction force for the reinforcement of cell-particle bonds and long-term cell adhesion. The results suggest that microparticles with diameters of 14-20 μm are prone to cell-mediated mobility, holding the potential of inducing early cell detachment, while objects with diameters from 38 to 85 μm enable long-lasting cell adhesion and proliferation. An in silico hybrid particle-based model that addresses the time-dependent biological mechanisms of cell adhesion is proposed, providing inspiration for engineering platforms to address healthcare-related challenges.
研究贴壁细胞与力学稳定(黏弹)材料的相互作用,能够理解和利用细胞-细胞外通讯介导的生理现象。深入了解细胞与周围物体在细胞接触时的不同稳定性模式的相互作用,可能揭示对工程创新应用的生物反应。在这里,我们假设细胞附着、铺展和在自由堆积的微粒床中迁移的效率取决于微粒的直径,这表明细胞-颗粒结合力的增强和长期细胞黏附需要必要的最小牵引力。结果表明,直径为 14-20μm 的微粒易于发生细胞介导的迁移,有可能导致早期细胞脱落,而直径为 38-85μm 的物体则能够实现持久的细胞黏附和增殖。提出了一种混合基于粒子的数值模型,该模型可以解决细胞黏附的时变生物学机制,为解决与医疗保健相关的挑战的工程平台提供了灵感。