Suppr超能文献

基于投票的多任务学习的 OCTA 图像视网膜结构检测。

Retinal Structure Detection in OCTA Image via Voting-Based Multitask Learning.

出版信息

IEEE Trans Med Imaging. 2022 Dec;41(12):3969-3980. doi: 10.1109/TMI.2022.3202183. Epub 2022 Dec 2.

Abstract

Automated detection of retinal structures, such as retinal vessels (RV), the foveal avascular zone (FAZ), and retinal vascular junctions (RVJ), are of great importance for understanding diseases of the eye and clinical decision-making. In this paper, we propose a novel Voting-based Adaptive Feature Fusion multi-task network (VAFF-Net) for joint segmentation, detection, and classification of RV, FAZ, and RVJ in optical coherence tomography angiography (OCTA). A task-specific voting gate module is proposed to adaptively extract and fuse different features for specific tasks at two levels: features at different spatial positions from a single encoder, and features from multiple encoders. In particular, since the complexity of the microvasculature in OCTA images makes simultaneous precise localization and classification of retinal vascular junctions into bifurcation/crossing a challenging task, we specifically design a task head by combining the heatmap regression and grid classification. We take advantage of three different en face angiograms from various retinal layers, rather than following existing methods that use only a single en face. We carry out extensive experiments on three OCTA datasets acquired using different imaging devices, and the results demonstrate that the proposed method performs on the whole better than either the state-of-the-art single-purpose methods or existing multi-task learning solutions. We also demonstrate that our multi-task learning method generalizes across other imaging modalities, such as color fundus photography, and may potentially be used as a general multi-task learning tool. We also construct three datasets for multiple structure detection, and part of these datasets with the source code and evaluation benchmark have been released for public access.

摘要

视网膜结构(如视网膜血管、中心凹无血管区和视网膜血管分叉/交叉)的自动检测对于了解眼部疾病和临床决策具有重要意义。在本文中,我们提出了一种新的基于投票的自适应特征融合多任务网络(VAFF-Net),用于光学相干断层扫描血管造影(OCTA)中视网膜血管、中心凹无血管区和视网膜血管分叉/交叉的联合分割、检测和分类。提出了一种特定任务的投票门模块,用于在两个层次上自适应地提取和融合特定任务的不同特征:来自单个编码器的不同空间位置的特征,以及来自多个编码器的特征。特别是,由于 OCTA 图像中小血管的复杂性,同时精确定位和将视网膜血管分叉/交叉分类为分叉/交叉是一项具有挑战性的任务,我们专门设计了一个任务头部,通过结合热图回归和网格分类来实现。我们利用来自不同视网膜层的三种不同的面内血管造影图,而不是遵循现有的仅使用一种面内血管造影图的方法。我们在使用不同成像设备采集的三个 OCTA 数据集上进行了广泛的实验,结果表明,所提出的方法整体上优于最先进的单一用途方法或现有的多任务学习解决方案。我们还证明了我们的多任务学习方法可以推广到其他成像模式,如彩色眼底摄影,并可能潜在地用作通用的多任务学习工具。我们还构建了三个用于多种结构检测的数据集,其中部分数据集及其源代码和评估基准已公开发布供公众访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验