Suppr超能文献

在智利导致炭疽病果实腐烂的首次报告。 (原英文文本表述似乎不太完整,比如“on”后面缺少具体对象,这是按照现有内容尽量准确翻译的)

First report of causing anthracnose fruit rot on in Chile.

作者信息

Castro Jean Franco, Millas Paz, Cisterna-Oyarce Viviana, Carrasco Jorge, Santelices Cecilia, Muñoz-Reyes Violeta, Guerra Matias, Barra-Bucarei Lorena, France Andrés

机构信息

Instituto de Investigaciones Agropecuarias Centro Regional Quilamapu, Chillan, Ñuble, Chile;

Instituto de Investigaciones Agropecuarias Centro Regional Quilamapu, Av. Vicente Méndez 515, Chillan, Diguillín, Chile, 3780000;

出版信息

Plant Dis. 2022 Aug 31. doi: 10.1094/PDIS-06-22-1340-PDN.

Abstract

Vaccinium corymbosum L. is the most cultivated blueberry species in Chile. Chilean fruits typically take up to 50 days to reach oversea markets; therefore, controlling post-harvest pathogens is of outmost importance to maintain international food safety and quality standards. In February 2019, the Microbial Genetic Resources Bank at INIA received fruits of V. corymbosum cv. 'Brigitta Blue' from Mariquina (-39.567869, -72.992461), located in the southern Chilean blueberry production zone, for post-harvest disease diagnosis. Asymptomatic fruits were incubated in moist-chambers at 25 °C with light/darkness cycles of 12 h. After 5 d, some fruits showed sunken areas and small surface wounds that exudated orange masses of conidia; under the epidermis, gray acervuli were also detected. After 15d, these fruits became dehydrated, mummified, and covered by mycelia, all characteristic symptoms of anthracnose (Wharton and Schilder 2008). In Chile, Colletotrichum gloeosporioides has, thus far, been the only causal agent of anthracnose reported in blueberry (Lara et al. 2003). Conidia exudated from the diseased fruit were inoculated on potato-dextrose agar (PDA) and incubated at 25 °C for 7 d. The resulting colony was predominantly cottony with gray aerial mycelium, displaying masses of pale orange conidia; on the reverse side, the colony was a pink-reddish color. Under a microscope, conidia were hyaline, fusiform to elliptic in shape, and displaying guttulate of 12.2±1.2 × 4.17±0.3 μm (n=30), characteristics coinciding with those described for Colletotrichum fioriniae (Pennycook 2017; Shivas and Tan 2009) (Supplementary Figure 1). The isolate was deposited in the Chilean Collection of Microbial Genetic Resources (CChRGM) as RGM 3330. Genomic DNA extraction of RGM 3330 and phylogenetic analyses were carried out according to Cisterna-Oyarce et al. (2022). A multi-locus sequencing analysis was carried out using five genetic markers. The internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (gapdh), actin (act), and chitin synthase 1 (chs-1) were PCR-amplified following Damm et al. (2012) and -tubulin (tub) following Glass and Donaldson (1995). Sequences were deposited in GenBank (ON364141 for ITS and ON369167-70 for tub, act, chs-1, and gapdh, respectively) (Sayers et al. 2021). A BLAST analysis carried out in SequenceServer (Priyam et al. 2019), using a custom database of sequences retrieved from Damm et al. (2012) and Liu et al. (2020), showed that all genetic markers were 100% identical to those of C. fioriniae CBS 128517T (ITS (540/540 identities), gapdh (249/249), act (245/245), and chs-1 (274/274)), except for tub, which shared 99.8% of its identities (416/417) with this species. Maximum likelihood phylogenetic estimation clustered RGM 3330 with C. fioriniae strains CBS 128517T and CBS 126526 with 100% bootstrap support (Supplementary Figure 1). Koch's postulates were carried out with asymptomatic fruits of V. corymbosum cv. 'Brigitta Blue'. Prior to inoculation, fruits were surface-sterilized for 10 s in 70% ethanol, 3 s in 1% NaOCl, 10 s in 70% ethanol, rinsed three times with sterile distilled water, and subsequently placed in moist-chambers. Two groups of three repetitions of 20 fruits each were sprayed with 9 × 106 conidia/mL of RGM 3330 for the first group and with sterile distilled water for the control. After 5 d at 25 °C with light/darkness cycles of 12 h, only fruits sprayed with the conidial solution developed symptoms of anthracnose and the re-isolated fungi were identical in morphology to RGM 3330. This is the first report of C. fioriniae in blueberry in Chile. References Cisterna-Oyarce, V., Carrasco-Fernández, J., Castro, J. F., Santelices, C., Muñoz-Reyes, V., Millas, P., Buddie, A. G., and France, A. 2022. Gnomoniopsis smithogilvyi: identification, characterization and incidence of the main pathogen causing brown rot in postharvest sweet chestnut fruits (Castanea sativa) in Chile. Australasian Plant Disease Notes 17:2. Damm, U., Cannon, P. F., Woudenberg, J. H., and Crous, P. W. 2012. The Colletotrichum acutatum species complex. Stud. Mycol. 73:37-113. Glass, N. L., and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330. Lara, O., Velazquez, C. G., and Ascencio, C. 2003. Colletotrichum gloeosporiodes in blueberry fruit. in: XIII Congreso de Fitopatología. Liu, X., Zheng, X., Khaskheli, M. I., Sun, X., Chang, X., and Gong, G. 2020. Identification of Colletotrichum species associated with blueberry anthracnose in Sichuan, China. Pathogens 9:718. Pennycook, S. 2017. Colletotrichum fioriniae comb. & stat. nov., resolving a nomenclatural muddle. Mycotaxon 132:149-152. Priyam, A., Woodcroft, B. J., Rai, V., Moghul, I., Munagala, A., Ter, F., Chowdhary, H., Pieniak, I., Maynard, L. J., Gibbins, M. A., Moon, H., Davis-Richardson, A., Uludag, M., Watson-Haigh, N. S., Challis, R., Nakamura, H., Favreau, E., Gómez, E. A., Pluskal, T., Leonard, G., Rumpf, W., and Wurm, Y. 2019. Sequenceserver: a modern graphical user interface for custom BLAST databases. Mol. Biol. Evol. 36:2922-2924. Sayers, E. W., Cavanaugh, M., Clark, K., Pruitt, K. D., Schoch, C. L., Sherry, S. T., and Karsch-Mizrachi, I. 2021. GenBank. Nucleic Acids Res. 49:D92-D96. Shivas, R. G., and Tan, Y. P. 2009. A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov. Fungal Divers. 39:111-122. Wharton, P., and Schilder, A. 2008. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57:122-134. Supplementary material Supplementary Figure 1: Isolation and identification of Colletotrichum fioriniae RGM 3330 from blueberry fruits cv. 'Brigitta Blue' from Chile. (A) A fruit showing anthracnose; (B) colony of Colletotrichum fioriniae RGM 3330 growing on PDA; (C) microscopic observation of the conidia (100x magnification; bar=10 µm); (D) phylogenetic tree resulting from a maximum likelihood analysis of combined sequence data from ITS, act, chs-1, gapdh, and tub regions for Colletotrichum acutatum species complex, number in the nodes represent ultrafast bootstrap values.

摘要

越橘是智利种植最广泛的蓝莓品种。智利的水果通常需要长达50天才能抵达海外市场;因此,控制采后病原体对于维持国际食品安全和质量标准至关重要。2019年2月,智利农业研究与创新研究所(INIA)的微生物遗传资源库收到了来自智利南部蓝莓产区马里基纳(-39.567869,-72.992461)的越橘品种‘布里吉塔蓝’的果实,用于采后病害诊断。无症状的果实置于25℃的保湿箱中,进行12小时的明暗循环处理。5天后,一些果实出现凹陷区域和小的表面伤口,渗出橙色的分生孢子团;在表皮下,还检测到灰色的分生孢子盘。15天后,这些果实脱水、干缩并被菌丝体覆盖,这些都是炭疽病的典型症状(沃顿和席尔德,2008年)。在智利,到目前为止,胶孢炭疽菌是蓝莓中报道的唯一炭疽病病原体(拉腊等人,2003年)。从患病果实中渗出的分生孢子接种在马铃薯葡萄糖琼脂(PDA)上,于25℃培养7天。产生的菌落主要呈棉絮状,气生菌丝为灰色,有大量浅橙色分生孢子;菌落背面为粉红色至红色。在显微镜下,分生孢子透明,形状为梭形至椭圆形,具油滴,大小为12.2±1.2×4.17±0.3μm(n = 30),这些特征与佛罗里炭疽菌的描述相符(彭尼库克,2017年;希瓦斯和谭,2009年)(补充图1)。该分离株作为RGM 3330保藏于智利微生物遗传资源保藏中心(CChRGM)。根据西斯泰纳 - 奥亚尔塞等人(2022年)的方法对RGM 3330进行基因组DNA提取和系统发育分析。使用五个遗传标记进行多位点测序分析。按照达姆等人(2012年)的方法对内部转录间隔区(ITS)、甘油醛 - 3 - 磷酸脱氢酶(gapdh)、肌动蛋白(act)和几丁质合酶1(chs - 1)进行PCR扩增,按照格拉斯和唐纳森(1995年)的方法对β - 微管蛋白(tub)进行PCR扩增。序列分别保藏于GenBank(ITS为ON364141,tub、act、chs - 1和gapdh分别为ON369167 - 70)(赛耶斯等人,2021年)。在SequenceServer(普里亚姆等人,2019年)中使用从达姆等人(2012年)和刘等人(2020年)检索到的序列定制数据库进行BLAST分析,结果显示所有遗传标记与佛罗里炭疽菌CBS 128517T的标记100%相同(ITS(540/540个相同位点)、gapdh(249/249)、act(245/245)和chs - 1(274/274)),除了tub,它与该物种有99.8%的相同位点(416/417)。最大似然系统发育估计将RGM 3330与佛罗里炭疽菌菌株CBS 128517T和CBS 126526聚类在一起,自展支持率为100%(补充图1)。用越橘品种‘布里吉塔蓝’的无症状果实进行了柯赫氏法则验证。接种前,果实先在70%乙醇中表面消毒10秒,在1%次氯酸钠中消毒3秒,再在70%乙醇中消毒10秒,用无菌蒸馏水冲洗三次,随后置于保湿箱中。第一组20个果实分为两组,每组三个重复,喷洒9×10⁶个/mL的RGM 3330分生孢子溶液,对照组喷洒无菌蒸馏水。在25℃、12小时明暗循环条件下培养5天后,只有喷洒分生孢子溶液的果实出现炭疽病症状,重新分离得到的真菌在形态上与RGM 3330相同。这是智利蓝莓中首次报道佛罗里炭疽菌。参考文献西斯泰纳 - 奥亚尔塞,V.,卡拉斯科 - 费尔南德斯,J.,卡斯特罗,J. F.,桑特利塞斯,C.,穆尼奥斯 - 雷耶斯,V.,米拉斯,P.,巴迪,A. G.,和弗朗斯,A. 2022年。智利甜栗子(Castanea sativa)采后褐腐病主要病原菌史密斯格诺木霉的鉴定、特征及发病率。澳大利亚植物病害记录17:2。达姆,U.,坎农,P. F.,沃登伯格,J. H.,和克劳斯,P. W. 2012年。尖孢炭疽菌复合种。真菌研究73:37 - 113。格拉斯,N. L.,和唐纳森,G. C. 1995年。设计用于PCR扩增丝状子囊菌保守基因的引物组的开发。应用与环境微生物学61:1323 - 1330。拉腊,O.,贝拉斯克斯,C. G.,和阿斯森西奥,C. 2003年。蓝莓果实中的胶孢炭疽菌。见:第十三届植物病理学大会。刘,X.,郑,X.,哈斯凯利,M. I.,孙,X.,常,X.,和龚,G. 2020年。中国四川与蓝莓炭疽病相关的炭疽菌种类鉴定。病原体9:718。彭尼库克,S. 2017年。佛罗里炭疽菌新组合及新状态,解决一个命名混乱问题。真菌分类学报132:149 - 152。普里亚姆,A.,伍德克罗夫特,B. J.,拉伊,V.,莫古尔,I.,穆纳加拉,A.,特尔,F.,乔杜里,H.,皮尼亚克,I.,梅纳德,L. J.,吉宾斯,M. A.,穆恩,H.,戴维斯 - 理查森,A.,乌鲁达格,M.,沃森 - 黑格,N. S.,查利斯,R.,中村,H.,法弗罗,E.,戈麦斯,E. A.,普卢斯卡,T.,伦纳德,G.,伦普夫,W.,和武尔姆,Y. 2019年。SequenceServer:用于定制BLAST数据库的现代图形用户界面。分子生物学与进化36:2922 - 2924。赛耶斯,E. W.,卡瓦诺,M.,克拉克,K.,普鲁伊特,K. D.,肖赫,C. L.,雪莉,S. T.,和卡尔施 - 米兹拉希,I. 2021年。GenBank。核酸研究49:D92 - D96。希瓦斯,R. G.,和谭,Y. P. 2009年。尖孢炭疽菌的分类重新评估,引入佛罗里炭疽菌新组合及新状态和西蒙兹炭疽菌新种。真菌多样性39:111 - 122。沃顿,P.,和席尔德,A. 2008年。尖孢炭疽菌对成熟蓝莓果实的新感染策略。植物病理学57:122 - 134。补充材料补充图1:从智利蓝莓品种‘布里吉塔蓝’果实中分离和鉴定佛罗里炭疽菌RGM 3330。(A)显示炭疽病的果实;(B)佛罗里炭疽菌RGM 3330在PDA上生长的菌落;(C)分生孢子的显微镜观察(100倍放大;标尺 = 10 µm);(D)基于尖孢炭疽菌复合种ITS、act、chs - 1、gapdh和tub区域组合序列数据的最大似然分析得到的系统发育树,节点处的数字代表超快自展值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验