Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
Anal Chem. 2022 Sep 13;94(36):12461-12471. doi: 10.1021/acs.analchem.2c02617. Epub 2022 Aug 31.
RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR) have revolutionized molecular diagnostics by offering versatile Cas effectors. We previously developed an isothermal amplification reaction method using Cas9 nickase (Cas9 nAR) to detect genomic DNA. However, slow dissociation of Cas9n from nicked double-stranded DNA (dsDNA) substrates dramatically hampers the cooperation between Cas9n and DNA polymerase, leading to low amplification efficiency. Here, we use structure-guided protein engineering to generate a Cas9n variant with faster kinetics and enhanced targeting specificity, and apply it to develop Cas9 nAR version 2 (Cas9 nAR-v2) by deftly merging reverse transcription with nicking-extension-displacement-based amplification for isothermal, one-pot RNA detection. This assay is validated by detecting 16S rRNA, O157:H7 16S rRNA, synthetic SARS-CoV-2 genes, and HIV virus RNA, showing a quantitative analysis over a wide, linear range and a detection limit as low as fewer than ten copies of RNA molecules per reaction (20 μL volume). It also shows an excellent nucleotide-mutation discrimination capability in detecting SARS-CoV-2 variants. Furthermore, Cas9 nAR-v2 is compatible with low-cost point-of-care (POC) tests based on fluorescence and lateral-flow readouts. In summary, this method provides a new paradigm for sensitive, direct RNA detection and would spur the exploration of engineered Cas effectors with improved properties for a wide range of biological applications.
RNA 引导的簇状规律间隔短回文重复序列 (CRISPR) 通过提供多功能 Cas 效应子彻底改变了分子诊断。我们之前开发了一种使用 Cas9 核酸酶 (Cas9 nAR) 的等温扩增反应方法来检测基因组 DNA。然而,Cas9n 从缺口双链 DNA (dsDNA) 底物上的缓慢解离极大地阻碍了 Cas9n 和 DNA 聚合酶之间的合作,导致扩增效率低。在这里,我们使用结构指导的蛋白质工程生成具有更快动力学和增强靶向特异性的 Cas9n 变体,并巧妙地将逆转录与缺口-延伸-置换扩增融合应用于 Cas9 nAR 版本 2 (Cas9 nAR-v2) 的开发,用于等温、一步式 RNA 检测。该测定通过检测 16S rRNA、O157:H7 16S rRNA、合成的 SARS-CoV-2 基因和 HIV 病毒 RNA 得到验证,显示出宽线性范围内的定量分析和低至每个反应 (20 μL 体积) 少于 10 个拷贝 RNA 分子的检测限。它在检测 SARS-CoV-2 变体时还显示出出色的核苷酸突变区分能力。此外,Cas9 nAR-v2 与基于荧光和侧流读数的低成本即时护理 (POC) 测试兼容。总之,该方法为灵敏、直接的 RNA 检测提供了新的范例,并将激发对具有改进性能的工程化 Cas 效应子的探索,以满足广泛的生物学应用需求。