Suppr超能文献

利用 CRISPR-Cas9 核酸酶在地衣芽孢杆菌中开发高效基因组编辑工具。

Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.

机构信息

State Key Laboratory of Agricultural Microbiology, College Life Science and Technology, Huazhong Agricultural University, Wuhan, China.

Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China.

出版信息

Appl Environ Microbiol. 2018 Mar 1;84(6). doi: 10.1128/AEM.02608-17. Print 2018 Mar 15.

Abstract

strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for using a CRISPR-Cas9 nickase integrated into the genome of DW2 with overexpression driven by the P43 promoter. The gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene , which codes for nattokinase in , was inserted into the chromosome of with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S Finally, the engineered strain DWc9nΔ7 (Δ Δ Δ Δ Δ Δ Δ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in This tool could be applied to strain improvement for future research. As important industrial bacteria, strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression.

摘要

菌株是重要的工业细菌,可生产各种生化产品。然而,低转化效率和缺乏有效的基因组编辑工具限制了其广泛应用。最近,成簇规律间隔短回文重复(CRISPR)-Cas9 技术已被用于许多生物体的基因组编辑工具,因为其高效且易于操作。在这项研究中,开发了一种利用整合到基因组中的 CRISPR-Cas9 切口酶和由 P43 启动子驱动的过表达的高效基因组编辑方法。以 1.0 kb 同源臂为代表,使用 CRISPR-Cas9n 技术删除了 基因,效率达到 100%。此外,同时敲除了两个基因,效率为 11.6%,并以 79.0%的效率删除了 42.7 kb 的大片段 DNA。此外,将编码纳豆激酶的异源报告基因 插入到 染色体中,效率为 76.5%。DWc9nΔ7/pP43SNT-S 菌株中纳豆激酶的活性达到 59.7 纤维蛋白溶酶单位(FU)/ml,比 DWc9n/pP43SNT-S 提高了 25.7%。最后,使用 CRISPR-Cas9n 技术构建了具有多个敲除基因的工程菌株 DWc9nΔ7(Δ Δ Δ Δ Δ Δ Δ)。总之,我们在 中开发了一种基于 CRISPR-Cas9n 的高效基因组编辑工具。该工具可应用于未来研究的菌株改良。作为重要的工业细菌,由于其生物制品的生产,菌株引起了人们的极大关注。然而,这些细菌的遗传操作很困难。CRISPR-Cas9 系统已被应用于一些细菌的基因组编辑,并且在以前的报告中证明了 CRISPR-Cas9n 是一种高效和精确的工具。我们研究的意义在于开发一种用于 单基因缺失、多基因敲除、大片段 DNA 缺失和单基因整合的高效、更精确和系统的基因组编辑方法通过 Cas9 切口酶。我们还将该方法应用于宿主菌株的遗传工程以表达蛋白质。

相似文献

1
Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
Appl Environ Microbiol. 2018 Mar 1;84(6). doi: 10.1128/AEM.02608-17. Print 2018 Mar 15.
2
Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing.
Int J Biol Macromol. 2019 Feb 1;122:329-337. doi: 10.1016/j.ijbiomac.2018.10.170. Epub 2018 Oct 25.
3
Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
World J Microbiol Biotechnol. 2018 Sep 29;34(10):153. doi: 10.1007/s11274-018-2537-1.
4
Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
Appl Environ Microbiol. 2016 Aug 15;82(17):5421-7. doi: 10.1128/AEM.01453-16. Print 2016 Sep 1.
5
Development of a CRISPR/Cas9 System for Methylococcus capsulatus Gene Editing.
Appl Environ Microbiol. 2019 May 16;85(11). doi: 10.1128/AEM.00340-19. Print 2019 Jun 1.
6
High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.
J Appl Microbiol. 2016 Sep;121(3):704-12. doi: 10.1111/jam.13175. Epub 2016 Jul 21.
7
CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.01834-18. Print 2018 Dec 1.
8
Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
Microb Cell Fact. 2017 Nov 16;16(1):205. doi: 10.1186/s12934-017-0815-5.
9
Development of a CRISPR/Cas9 Nickase (nCas9)-Mediated Genome Editing Tool in .
ACS Synth Biol. 2023 Oct 20;12(10):3114-3123. doi: 10.1021/acssynbio.3c00466. Epub 2023 Sep 18.
10
Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
Appl Environ Microbiol. 2017 May 1;83(10). doi: 10.1128/AEM.00233-17. Print 2017 May 15.

引用本文的文献

2
Current Approaches for Genetic Manipulation of spp.-Key Bacteria for Biotechnology and Environment.
BioTech (Basel). 2025 Jan 2;14(1):3. doi: 10.3390/biotech14010003.
3
Optimizing genome editing efficiency in via a CRISPR/Cas9n-mediated editing system.
Appl Environ Microbiol. 2025 Feb 19;91(2):e0195324. doi: 10.1128/aem.01953-24. Epub 2025 Jan 22.
4
Establishment of the CRISPR-Cpf1 gene editing system in and multiplexed gene knockout.
Synth Syst Biotechnol. 2024 Aug 8;10(1):39-48. doi: 10.1016/j.synbio.2024.08.002. eCollection 2025.
5
Advancing as a Superior Expression Platform through Promoter Engineering.
Microorganisms. 2024 Aug 16;12(8):1693. doi: 10.3390/microorganisms12081693.
6
Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering.
J Agric Food Chem. 2024 May 29;72(21):11871-11884. doi: 10.1021/acs.jafc.4c01650. Epub 2024 May 14.
7
CRISPR-Cas-Based Engineering of Probiotics.
Biodes Res. 2023 Sep 29;5:0017. doi: 10.34133/bdr.0017. eCollection 2023.
9
CRISPR-Based Gene Editing in to Combat Antimicrobial Resistance.
Pharmaceuticals (Basel). 2023 Jun 23;16(7):920. doi: 10.3390/ph16070920.
10
Biotechnological and food synthetic biology potential of platform strain: .
Synth Syst Biotechnol. 2023 Mar 30;8(2):281-291. doi: 10.1016/j.synbio.2023.03.008. eCollection 2023 Jun.

本文引用的文献

1
Microbial production of poly-γ-glutamic acid.
World J Microbiol Biotechnol. 2017 Sep 5;33(9):173. doi: 10.1007/s11274-017-2338-y.
2
CRISPR-Cas9 Nickase-Assisted Genome Editing in Lactobacillus casei.
Appl Environ Microbiol. 2017 Oct 31;83(22). doi: 10.1128/AEM.01259-17. Print 2017 Nov 15.
3
A Highly Efficient CRISPR-Cas9-Mediated Large Genomic Deletion in .
Front Microbiol. 2017 Jun 23;8:1167. doi: 10.3389/fmicb.2017.01167. eCollection 2017.
4
A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum.
J Microbiol Methods. 2017 Sep;140:5-11. doi: 10.1016/j.mimet.2017.06.010. Epub 2017 Jun 10.
5
A Novel and Efficient Method for Bacteria Genome Editing Employing both CRISPR/Cas9 and an Antibiotic Resistance Cassette.
Front Microbiol. 2017 May 5;8:812. doi: 10.3389/fmicb.2017.00812. eCollection 2017.
6
Identification and High-level Production of Pulcherrimin in Bacillus licheniformis DW2.
Appl Biochem Biotechnol. 2017 Dec;183(4):1323-1335. doi: 10.1007/s12010-017-2500-x. Epub 2017 May 18.
7
Precise genome-wide base editing by the CRISPR Nickase system in yeast.
Sci Rep. 2017 May 18;7(1):2095. doi: 10.1038/s41598-017-02013-7.
8
CRISPR-Cas9 Structures and Mechanisms.
Annu Rev Biophys. 2017 May 22;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub 2017 Mar 30.
9
Untangling the transcription regulatory network of the bacitracin synthase operon in Bacillus licheniformis DW2.
Res Microbiol. 2017 Jul-Aug;168(6):515-523. doi: 10.1016/j.resmic.2017.02.010. Epub 2017 Mar 7.
10
Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9.
Microb Cell Fact. 2016 Dec 1;15(1):205. doi: 10.1186/s12934-016-0605-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验