State Key Laboratory of Agricultural Microbiology, College Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China.
Appl Environ Microbiol. 2018 Mar 1;84(6). doi: 10.1128/AEM.02608-17. Print 2018 Mar 15.
strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for using a CRISPR-Cas9 nickase integrated into the genome of DW2 with overexpression driven by the P43 promoter. The gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene , which codes for nattokinase in , was inserted into the chromosome of with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S Finally, the engineered strain DWc9nΔ7 (Δ Δ Δ Δ Δ Δ Δ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in This tool could be applied to strain improvement for future research. As important industrial bacteria, strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to be an efficient and precise tool in previous reports. The significance of our research is the development of an efficient, more precise, and systematic genome editing method for single-gene deletion, multiple-gene disruption, large DNA fragment deletion, and single-gene integration in via Cas9 nickase. We also applied this method to the genetic engineering of the host strain for protein expression.
菌株是重要的工业细菌,可生产各种生化产品。然而,低转化效率和缺乏有效的基因组编辑工具限制了其广泛应用。最近,成簇规律间隔短回文重复(CRISPR)-Cas9 技术已被用于许多生物体的基因组编辑工具,因为其高效且易于操作。在这项研究中,开发了一种利用整合到基因组中的 CRISPR-Cas9 切口酶和由 P43 启动子驱动的过表达的高效基因组编辑方法。以 1.0 kb 同源臂为代表,使用 CRISPR-Cas9n 技术删除了 基因,效率达到 100%。此外,同时敲除了两个基因,效率为 11.6%,并以 79.0%的效率删除了 42.7 kb 的大片段 DNA。此外,将编码纳豆激酶的异源报告基因 插入到 染色体中,效率为 76.5%。DWc9nΔ7/pP43SNT-S 菌株中纳豆激酶的活性达到 59.7 纤维蛋白溶酶单位(FU)/ml,比 DWc9n/pP43SNT-S 提高了 25.7%。最后,使用 CRISPR-Cas9n 技术构建了具有多个敲除基因的工程菌株 DWc9nΔ7(Δ Δ Δ Δ Δ Δ Δ)。总之,我们在 中开发了一种基于 CRISPR-Cas9n 的高效基因组编辑工具。该工具可应用于未来研究的菌株改良。作为重要的工业细菌,由于其生物制品的生产,菌株引起了人们的极大关注。然而,这些细菌的遗传操作很困难。CRISPR-Cas9 系统已被应用于一些细菌的基因组编辑,并且在以前的报告中证明了 CRISPR-Cas9n 是一种高效和精确的工具。我们研究的意义在于开发一种用于 单基因缺失、多基因敲除、大片段 DNA 缺失和单基因整合的高效、更精确和系统的基因组编辑方法通过 Cas9 切口酶。我们还将该方法应用于宿主菌株的遗传工程以表达蛋白质。