Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
University Centre for Rural Health, School of Public Health, The University of Sydney, Sydney, NSW, 2006, Australia.
Biomaterials. 2022 Oct;289:121760. doi: 10.1016/j.biomaterials.2022.121760. Epub 2022 Aug 28.
Selective targeting of elevated copper (Cu) in cancer cells by chelators to induce tumor-toxic reactive oxygen species (ROS) may be a promising approach in the treatment of glioblastoma multiforme (GBM). Previously, the Cu chelator di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) attracted much interest due to its potent anti-tumor activity mediated by the formation of a highly redox-active Cu-Dp44mT complex. However, its translational potential was limited by the development of toxicity in murine models of cancer reflecting poor selectivity. Here, we overcame the limitations of Dp44mT by incorporating it in new biomimetic nanoparticles (NPs) optimized for GBM therapy. Biomimetic design elements enhancing selectivity included angiopeptide-2 functionalized red blood cell membrane (Ang-M) camouflaging of the NPs carrier. Co-loading Dp44mT with regadenoson (Reg), that transiently opens the blood-brain-barrier (BBB), yielded biomimetic Ang-MNPs@(Dp44mT/Reg) NPs that actively targeted and traversed the BBB delivering Dp44mT specifically to GBM cells. To further improve selectivity, we innovatively pre-loaded GBM tumors with Cu. Oral dosing of U87MG-Luc tumor bearing mice with diacetyl-bis(4-methylthiosemicarbazonato)-copperII (Cu(II)-ATSM), significantly enhanced Cu-level in GBM tumor. Subsequent treatment of mice bearing Cu-enriched orthotopic U87MG-Luc GBM with Ang-MNPs@(Dp44mT/Reg) substantially prevented orthotopic GBM growth and led to maximal increases in median survival time. These results highlighted the importance of both angiopeptide-2 functionalization and tumor Cu-loading required for greater selective cytotoxicity. Targeting Ang-MNPs@(Dp44mT/Reg) NPs also down-regulated antiapoptotic Bcl-2, but up-regulated pro-apoptotic Bax and cleaved-caspase-3, demonstrating the involvement of the apoptotic pathway in GBM suppression. Notably, Ang-MNPs@(Dp44mT/Reg) showed negligible systemic drug toxicity in mice, further indicating therapeutic potential that could be adapted for other central nervous system disorders.
通过螯合剂选择性靶向升高的铜 (Cu) 以在癌细胞中诱导肿瘤毒性活性氧 (ROS),可能是治疗多形性胶质母细胞瘤 (GBM) 的一种很有前途的方法。以前,由于形成高度氧化还原活性的 Cu-Dp44mT 配合物,Cu 螯合剂二吡啶酮-4,4-二甲基-3-硫代缩氨基脲 (Dp44mT) 引起了极大的兴趣。然而,由于在癌症的小鼠模型中发展出毒性,其转化潜力受到限制,这反映出其选择性较差。在这里,我们通过将其纳入针对 GBM 治疗而优化的新型仿生纳米粒子 (NPs) 克服了 Dp44mT 的局限性。增强选择性的仿生设计元素包括血管肽-2 功能化红细胞膜 (Ang-M) 对 NPs 载体的伪装。与暂时打开血脑屏障 (BBB) 的雷苷素 (Reg) 一起共载 Dp44mT,得到仿生 Ang-MNPs@(Dp44mT/Reg) NPs,可主动靶向并穿透 BBB,将 Dp44mT 特异性递送至 GBM 细胞。为了进一步提高选择性,我们创新性地用 Cu 预加载 GBM 肿瘤。用二乙酰基双(4-甲基硫代缩氨基甲酸盐)合铜(II) (Cu(II)-ATSM) 对 U87MG-Luc 肿瘤荷瘤小鼠进行口服给药,显著提高了 GBM 肿瘤中的 Cu 水平。随后用 Ang-MNPs@(Dp44mT/Reg) 治疗富含 Cu 的原位 U87MG-Luc GBM 小鼠,可显著阻止原位 GBM 生长并使中位生存时间显著延长。这些结果突出了血管肽-2 功能化和肿瘤 Cu 加载对提高选择性细胞毒性的重要性。靶向 Ang-MNPs@(Dp44mT/Reg) NPs 还下调了抗凋亡的 Bcl-2,但上调了促凋亡的 Bax 和 cleaved-caspase-3,表明凋亡途径参与了 GBM 的抑制。值得注意的是,Ang-MNPs@(Dp44mT/Reg) 在小鼠中几乎没有全身药物毒性,进一步表明其具有治疗潜力,可适用于其他中枢神经系统疾病。