Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
Environ Pollut. 2022 Nov 15;313:120042. doi: 10.1016/j.envpol.2022.120042. Epub 2022 Aug 28.
Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.g., As and Pb) or various organic flotation reagents (e.g., ethylthionocarbamate). The addition of Fe greatly increased As immobilization compared to treatment without Fe, with the immobilization efficiencies of 81.0% and 58.9%, respectively. Scanning electronic microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the As immobilizing activity was related to the formation of arsenic sulfides (AsS, AsS, and AsS) and sorption/co-precipitation of pyrite (FeS). High-throughput 16S rRNA gene sequencing of SRB1 suggests that members of Clostridium, Desulfosporosinus, and Desulfovibrio genera play an important role in maintaining and stabilizing As immobilization activity. Metal(loid)s immobilizing activity of SRB1 was not observed at high and toxic total exposure concentrations (220-1181 mg As/kg or 63-222 mg Pb/kg). However, at lower concentrations, SRB1 treatment decreased bioavailable fractions of As (9.0%) and Pb (28.6%) compared to without treatment. Results indicate that enriched native SRB1 consortia exhibited metal(loid) transformation capacities under non-toxic concentrations of metal(loid)s for future bioremediation strategies to decrease mixed metal(loid)s exposure from smelter polluted soils.
从有色金属冶炼厂土壤中接触到的有毒金属会对周围的生态系统、农作物生产和人类健康造成严重威胁。利用微生物进行生物修复是处理金属(类)污染土壤的一种很有前途的策略。本研究从冶炼厂土壤中富集了具有硫酸盐还原功能的土著微生物群落(SRB1),该群落能够耐受重金属(类)(如 As 和 Pb)或各种有机浮选试剂(如乙基硫代氨基甲酸盐)的混合物。添加 Fe 可大大提高 As 的固定化效率,与不添加 Fe 的处理相比,固定化效率分别为 81.0%和 58.9%。扫描电子显微镜-能量色散光谱、X 射线衍射和 X 射线光电子能谱证实,As 的固定化活性与砷硫化物(AsS、AsS 和 AsS)的形成以及黄铁矿(FeS)的吸附/共沉淀有关。SRB1 的高通量 16S rRNA 基因测序表明,梭菌属、脱硫孢子菌属和脱硫弧菌属的成员在维持和稳定 As 固定化活性方面发挥着重要作用。在高毒性总暴露浓度(220-1181 mg As/kg 或 63-222 mg Pb/kg)下,SRB1 没有表现出金属(类)固定化活性。然而,在较低的浓度下,与不处理相比,SRB1 处理降低了 As(9.0%)和 Pb(28.6%)的生物可利用分数。结果表明,在毒性较低的金属(类)浓度下,富集的天然 SRB1 菌群表现出金属(类)转化能力,为未来的生物修复策略提供了依据,以减少冶炼厂污染土壤中混合金属(类)的暴露。