Wang Mei, Yan Ping, Zhang Ning-Ya, Deng Ying-Hao, Luo Xiao-Qin, Wang Xiu-Fen, Duan Shao-Bin
Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
Information Center, The Second Xiangya Hospital of Central South University, Changsha, China.
Front Med (Lausanne). 2022 Aug 15;9:892473. doi: 10.3389/fmed.2022.892473. eCollection 2022.
Acute kidney injury (AKI) that results from ischemia is a common clinical syndrome and correlates with high morbidity and mortality among hospitalized patients. However, a clinical tool to predict mortality risk of ischemic AKI is not available. In this study, we aimed to develop and validate models to predict the 30-day and 1-year mortality risk of hospitalized patients with ischemic AKI.
A total of 1,836 admissions with ischemic AKI were recruited from 277,898 inpatients admitted to three affiliated tertiary general hospitals of Central South University in China between January 2015 and December 2015. Patients in the final analysis were followed up for 1 year. Study patients were randomly divided in a 7:3 ratio to form the training cohort and validation cohort. Multivariable regression analyses were used for developing mortality prediction models.
Hepatorenal syndrome, shock, central nervous system failure, Charlson comorbidity index (≥2 points), mechanical ventilation, renal function at discharge were independent risk factors for 30-day mortality after ischemic AKI, while malignancy, sepsis, heart failure, liver failure, Charlson comorbidity index (≥2 points), mechanical ventilation, and renal function at discharge were predictors for 1-year mortality. The area under the receiver operating characteristic curves (AUROCs) of 30-day prediction model were 0.878 (95% confidence interval (CI): 0.849-0.908) in the training cohort and 0.867 (95% CI: 0.820-0.913) in the validation cohort. The AUROCs of the 1-year mortality prediction in the training and validation cohort were 0.803 (95% CI: 0.772-0.834) and 0.788 (95% CI: 0.741-0.835), respectively.
Our easily applied prediction models can effectively identify individuals at high mortality risk within 30 days or 1 year in hospitalized patients with ischemic AKI. It can guide the optimal clinical management to minimize mortality after an episode of ischemic AKI.
缺血所致的急性肾损伤(AKI)是一种常见的临床综合征,与住院患者的高发病率和死亡率相关。然而,目前尚无预测缺血性AKI患者死亡风险的临床工具。在本研究中,我们旨在开发并验证预测缺血性AKI住院患者30天和1年死亡风险的模型。
2015年1月至2015年12月期间,从中国中南大学三家附属三级综合医院收治的277,898例住院患者中,共纳入1836例缺血性AKI患者。最终分析中的患者随访1年。研究患者按7:3的比例随机分为训练队列和验证队列。采用多变量回归分析建立死亡预测模型。
肝肾综合征、休克、中枢神经系统衰竭、Charlson合并症指数(≥2分)、机械通气、出院时肾功能是缺血性AKI后30天死亡的独立危险因素,而恶性肿瘤、脓毒症、心力衰竭、肝功能衰竭、Charlson合并症指数(≥2分)、机械通气和出院时肾功能是1年死亡的预测因素。30天预测模型在训练队列中的受试者工作特征曲线下面积(AUROCs)为0.878(95%置信区间(CI):0.849 - 0.908),在验证队列中为0.867(95%CI:0.820 - 0.913)。训练队列和验证队列中1年死亡预测的AUROCs分别为0.803(95%CI:0.772 - 0.834)和0.788(95%CI:0.741 - 0.835)。
我们易于应用的预测模型能够有效识别缺血性AKI住院患者在30天或1年内死亡风险高的个体。它可以指导最佳临床管理,以降低缺血性AKI发作后的死亡率。