Cho Yuki, Nagatsuka Shinya, Murakami Yoichi
Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
Nippon Kayaku Co., Ltd., 3-31-12 Shimo, Kita-ku, Tokyo 115-8588, Japan.
Phys Chem Chem Phys. 2022 Sep 14;24(35):21396-21405. doi: 10.1039/d2cp02985e.
The Seebeck coefficient (Se) and the viscosity of a redox electrolyte are the key characteristics of thermoelectrochemical cells that generate electric power from waste thermal energy. However, the recent upsurge of research in this field is seriously disconnected from the knowledge of solution chemistry explored in the previous century. Herein, we systematically investigate five redox couples of cobalt complexes containing different aromatic ligands and anions in γ-butyrolactone solvent to demonstrate how the Einstein relation of hydrodynamic theory and the Jones-Dole coefficient obtained from viscosity measurements can be used to account for such electrolyte properties. In essence, we reveal that the outer-shell (solvent reorganization) and inner-shell (metal-ligand reorganization) contributions to the redox reaction entropy Δ (∝Se) can be quantified by the analyses using the -coefficients and quantum-chemical simulations, respectively, while the distinct regimes found in the viscosity and conductivity are well accounted for by the Einstein relation, despite its classical hydrodynamic origin.
塞贝克系数(Se)和氧化还原电解质的粘度是从废热中产生电能的热电化学电池的关键特性。然而,该领域最近的研究热潮与上世纪探索的溶液化学知识严重脱节。在此,我们系统地研究了在γ-丁内酯溶剂中含有不同芳香配体和阴离子的钴配合物的五对氧化还原对,以证明流体动力学理论的爱因斯坦关系和从粘度测量中获得的琼斯-多尔系数如何用于解释此类电解质特性。实质上,我们揭示了氧化还原反应熵Δ(∝Se)的外壳(溶剂重组)和内壳(金属-配体重组)贡献可以分别通过使用-系数和量子化学模拟的分析来量化,而粘度和电导率中发现的不同区域可以通过爱因斯坦关系得到很好的解释,尽管其源于经典流体动力学。