Pipatpolkai Tanadet, Usher Samuel, Stansfeld Phillip J, Ashcroft Frances M
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
Department of Biochemistry, University of Oxford, Oxford, UK.
Nat Rev Endocrinol. 2020 Jul;16(7):378-393. doi: 10.1038/s41574-020-0351-y. Epub 2020 May 6.
The ATP-sensitive potassium channel (K channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. K channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of K channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding K channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the K channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
ATP敏感性钾通道(K通道)将血糖水平与胰腺β细胞的胰岛素分泌联系起来。K通道关闭会触发一系列事件,导致胰岛素释放。细胞内腺苷核苷酸浓度的代谢性变化是这种调节的一个组成部分,ATP和ADP会使通道关闭,而MgATP和MgADP会增加通道活性。编码两种K通道亚基(Kir6.2和SUR1)中任何一种的基因发生激活突变会导致新生儿糖尿病,而功能丧失突变则会导致婴儿期高胰岛素血症性低血糖。与SUR1结合的磺脲类和格列奈类药物通过一条独立于ATP的途径使通道关闭,目前是由编码K通道亚基的基因突变引起的新生儿糖尿病的主要治疗方法。冷冻电子显微镜结构揭示了K通道复合物的原子水平组织,从而深入了解了药物和核苷酸对通道活性调节的分子细节。在这里,我们回顾这些结构如何帮助我们理解编码Kir6.2(KCNJ11)和SUR1(ABCC8)的基因中的各种突变如何导致ATP抑制作用降低,进而导致新生儿糖尿病。我们还提供了新生儿糖尿病中已知突变和磺脲类治疗的最新情况。