Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA. Electronic address: https://twitter.com/MinWooSung5.
Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
J Mol Biol. 2022 Oct 15;434(19):167789. doi: 10.1016/j.jmb.2022.167789. Epub 2022 Aug 11.
Regulation of pancreatic K channels involves orchestrated interactions of their subunits, Kir6.2 and SUR1, and ligands. Previously we reported K channel cryo-EM structures in the presence and absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as pharmacological chaperones of K channels (Martin et al., 2019). Here we analyzed the same cryo-EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP and PIP binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1's ABC module involving residues implicated in channel function and showed a SUR1 residue, K134, participates in PIP binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP binding, suggesting a mechanism for competitive gating by ATP and PIP.
胰腺 K 通道的调节涉及它们的亚基 Kir6.2 和 SUR1 以及配体的协调相互作用。我们之前报道了存在和不存在药理学抑制剂和 ATP 时 K 通道冷冻电镜结构的研究,重点是抑制剂如何作为 K 通道的药理学伴侣发挥作用(Martin 等人,2019 年)。在这里,我们分析了相同的冷冻电镜数据集,重点是通道构象动力学,以阐明与配体相互作用和通道门控相关的结构相关性。我们发现,药理学抑制剂和 ATP 使通道构象丰富,其中 Kir6.2 细胞质结构域与跨膜结构域紧密相关,而使另一种构象耗尽,其中 Kir6.2 细胞质结构域延伸到细胞质中。这种构象变化重塑了内部和亚基之间相互作用以及 ATP 和 PIP 结合口袋的网络。结构解析了 Kir6.2 的远端 N 末端和 SUR1 的 ABC 模块之间的关键接触,涉及到涉及通道功能的残基,并显示 SUR1 残基 K134 参与 PIP 结合。分子动力学模拟揭示了两个 Kir6.2 残基 K39 和 R54,它们介导 ATP 和 PIP 的结合,这表明了由 ATP 和 PIP 进行竞争门控的机制。