Suppr超能文献

多模态纹状体神经标志物在鉴别帕金森病变异型多系统萎缩与特发性帕金森病中的作用。

Multimodal striatal neuromarkers in distinguishing parkinsonian variant of multiple system atrophy from idiopathic Parkinson's disease.

机构信息

Department of Radiology, The first Affiliated Hospital of China Medical University, Shenyang, China.

School of Medicine, Xiamen University, Xiamen, China.

出版信息

CNS Neurosci Ther. 2022 Dec;28(12):2172-2182. doi: 10.1111/cns.13959. Epub 2022 Sep 1.

Abstract

AIMS

To develop an automatic method of classification for parkinsonian variant of multiple system atrophy (MSA-P) and Idiopathic Parkinson's disease (IPD) in early to moderately advanced stages based on multimodal striatal alterations and identify the striatal neuromarkers for distinction.

METHODS

77 IPD and 75 MSA-P patients underwent 3.0 T multimodal MRI comprising susceptibility-weighted imaging, resting-state functional magnetic resonance imaging, T1-weighted imaging, and diffusion tensor imaging. Iron-radiomic features, volumes, functional and diffusion scalars of bilateral 10 striatal subregions were calculated and provided to the support vector machine for classification RESULTS: A combination of iron-radiomic features, function, diffusion, and volumetric measures optimally distinguished IPD and MSA-P in the testing dataset (accuracy 0.911 and area under the receiver operating characteristic curves [AUC] 0.927). The diagnostic performance further improved when incorporating clinical variables into the multimodal model (accuracy 0.934 and AUC 0.953). The most crucial factor for classification was the functional activity of the left dorsolateral putamen.

CONCLUSION

The machine learning algorithm applied to multimodal striatal dysfunction depicted dorsal striatum and supervening prefrontal lobe and cerebellar dysfunction through the frontostriatal and cerebello-striatal connections and facilitated accurate classification between IPD and MSA-P. The dorsolateral putamen was the most valuable neuromarker for the classification.

摘要

目的

基于多模态纹状体改变,开发一种用于早期至中度进展期帕金森病变异型多系统萎缩(MSA-P)和特发性帕金森病(IPD)的自动分类方法,并确定用于区分的纹状体神经标志物。

方法

77 例 IPD 和 75 例 MSA-P 患者接受了 3.0T 多模态 MRI 检查,包括磁敏感加权成像、静息态功能磁共振成像、T1 加权成像和弥散张量成像。计算双侧 10 个纹状体亚区的铁放射组学特征、体积、功能和弥散标量,并提供给支持向量机进行分类。

结果

铁放射组学特征、功能、弥散和体积测量的组合在测试数据集(准确率为 0.911,受试者工作特征曲线下面积[AUC]为 0.927)中最佳地区分了 IPD 和 MSA-P。当将临床变量纳入多模态模型时,诊断性能进一步提高(准确率为 0.934,AUC 为 0.953)。分类的最关键因素是左侧背外侧壳核的功能活动。

结论

应用于多模态纹状体功能障碍的机器学习算法通过额纹状体和小脑纹状体连接描绘了背侧纹状体和继发的前额叶皮层和小脑功能障碍,有助于准确地区分 IPD 和 MSA-P。背外侧壳核是分类最有价值的神经标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab57/9627351/790c5f51e227/CNS-28-2172-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验