Suppr超能文献

在临床环境中使用磁共振成像对帕金森综合征进行自动分类。

Automated Categorization of Parkinsonian Syndromes Using Magnetic Resonance Imaging in a Clinical Setting.

机构信息

Paris Brain Institute-ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UMR S 1127, CNRS UMR 7225, Paris, France.

ICM, "Movement Investigations and Therapeutics" Team (MOV'IT), Paris, France.

出版信息

Mov Disord. 2021 Feb;36(2):460-470. doi: 10.1002/mds.28348. Epub 2020 Nov 2.

Abstract

BACKGROUND

Machine learning algorithms using magnetic resonance imaging (MRI) data can accurately discriminate parkinsonian syndromes. Validation in patients recruited in routine clinical practice is missing.

OBJECTIVE

The aim of this study was to assess the accuracy of a machine learning algorithm trained on a research cohort and tested on an independent clinical replication cohort for the categorization of parkinsonian syndromes.

METHODS

Three hundred twenty-two subjects, including 94 healthy control subjects, 119 patients with Parkinson's disease (PD), 51 patients with progressive supranuclear palsy (PSP) with Richardson's syndrome, 35 with multiple system atrophy (MSA) of the parkinsonian variant (MSA-P), and 23 with MSA of the cerebellar variant (MSA-C), were recruited. They were divided into a training cohort (n = 179) scanned in a research environment and a replication cohort (n = 143) examined in clinical practice on different MRI systems. Volumes and diffusion tensor imaging (DTI) metrics in 13 brain regions were used as input for a supervised machine learning algorithm. To harmonize data across scanners and reduce scanner-dependent effects, we tested two types of normalizations using patient data or healthy control data.

RESULTS

In the replication cohort, high accuracies were achieved using volumetry in the classification of PD-PSP, PD-MSA-C, PSP-MSA-C, and PD-atypical parkinsonism (balanced accuracies: 0.840-0.983, area under the receiver operating characteristic curves: 0.907-0.995). Performances were lower for the classification of PD-MSA-P, MSA-C-MSA-P (balanced accuracies: 0.765-0.784, area under the receiver operating characteristic curve: 0.839-0.871) and PD-PSP-MSA (balanced accuracies: 0.773). Performance using DTI was improved when normalizing by controls, but remained lower than that using volumetry alone or combined with DTI.

CONCLUSIONS

A machine learning approach based on volumetry enabled accurate classification of subjects with early-stage parkinsonism, examined on different MRI systems, as part of their clinical assessment. © 2020 International Parkinson and Movement Disorder Society.

摘要

背景

使用磁共振成像(MRI)数据的机器学习算法可以准确地区分帕金森综合征。在常规临床实践中招募的患者中进行验证是缺失的。

目的

本研究的目的是评估在研究队列中训练并在独立临床复制队列中测试的机器学习算法在帕金森综合征分类中的准确性。

方法

共招募了 322 名受试者,包括 94 名健康对照者、119 名帕金森病(PD)患者、51 名有 Richardson 综合征的进行性核上性麻痹(PSP)患者、35 名有帕金森变异型多系统萎缩(MSA-P)的患者和 23 名有小脑变异型多系统萎缩(MSA-C)的患者。他们被分为训练队列(n = 179),在研究环境中扫描;复制队列(n = 143)在不同的 MRI 系统中进行临床检查。13 个脑区的体积和扩散张量成像(DTI)指标被用作监督机器学习算法的输入。为了在扫描仪之间实现数据的协调,并减少与扫描仪相关的影响,我们使用患者数据或健康对照数据测试了两种类型的归一化方法。

结果

在复制队列中,使用体积测量法在 PD-PSP、PD-MSA-C、PSP-MSA-C 和 PD-非典型帕金森病的分类中取得了较高的准确率(平衡准确率:0.840-0.983,接收者操作特征曲线下的面积:0.907-0.995)。在 PD-MSA-P、MSA-C-MSA-P(平衡准确率:0.765-0.784,接收者操作特征曲线下的面积:0.839-0.871)和 PD-PSP-MSA(平衡准确率:0.773)的分类中,表现较差。使用对照进行归一化时,DTI 的性能得到了提高,但仍低于单独使用体积测量或与 DTI 相结合的性能。

结论

一种基于体积测量的机器学习方法能够在不同 MRI 系统的临床评估中准确地对早期帕金森病患者进行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验