Suppr超能文献

使用聚(乙烯亚胺)功能化的膨化聚四氟乙烯/二氧化硅复合结构吸附剂直接空气捕集二氧化碳

Direct Air Capture of CO Using Poly(ethyleneimine)-Functionalized Expanded Poly(tetrafluoroethylene)/Silica Composite Structured Sorbents.

作者信息

Min Youn Ji, Ganesan Arvind, Realff Matthew J, Jones Christopher W

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30332, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Sep 14;14(36):40992-41002. doi: 10.1021/acsami.2c11143. Epub 2022 Sep 1.

Abstract

The rapidly increasing atmospheric CO concentration has driven research into the development of cost- and energy-efficient materials and processes for the direct air capture of CO (DAC). Solid-supported amine materials can give high CO uptakes and acceptable sorption kinetics, but they are generally prepared in powder forms that are likely not practically deployable in large-scale operations due to significant pressure drops associated with packed-bed gas-solid contactors. To this end, the development of effective gas-solid contactors for CO capture technologies is important to allow processing high flow rates of gas with low-pressure drops and high mass transfer rates. In this study, we demonstrate new laminate-supported amine CO sorbents based on the impregnation of low-molecular-weight, branched poly(ethyleneimine) (PEI) into an expanded poly(tetrafluoroethylene) (ePTFE) sheet matrix containing embedded silica particles to form free-standing sheets amenable to incorporation into structured gas-solid contactors. The free-standing sheets are functionalized with PEI using a highly scalable wet impregnation method. This method allowed controllable PEI distribution and enough porosity retained inside the sheets to enable practical CO capacities ranging from 0.4 to 1.6 mmol CO/g under dry conditions. Reversible CO capacities are achieved under both dry and humid temperature swing cycles, indicating promising material stability. The specific thermal energy requirement for the regeneration based on the measured CO and water capacities is 287 kJ/mol CO, where the molar ratio of water to CO of 3.1 is achieved using hydrophobic materials. This is the lowest molar ratio among published DAC sorbents. A larger laminate module is tested under conditions closer to larger-scale operations (linear velocities 0.03, 0.05, and 0.1 m/sec) and demonstrates a stable capacity of 0.80 CO/g over five cycles of CO adsorption and steam regeneration. The PEI-impregnated ePTFE/silica composite sorbent/contactors demonstrate promising DAC performance derived from the amine-filled silica particles contained in hydrophobic ePTFE domains to reduce water sorption and its concomitant regeneration energy penalty.

摘要

大气中二氧化碳(CO₂)浓度的迅速增加推动了对开发用于直接空气捕获CO₂(DAC)的具有成本效益和能源效率的材料及工艺的研究。固体负载胺材料能够实现较高的CO₂吸收量以及可接受的吸附动力学,但它们通常制备成粉末形式,由于与填充床气固接触器相关的显著压降,可能无法实际应用于大规模操作。为此,开发用于CO₂捕获技术的有效气固接触器对于实现处理高气流量、低压降和高传质速率的气体至关重要。在本研究中,我们展示了一种新型的层压支撑胺CO₂吸附剂,它是通过将低分子量支化聚(乙烯亚胺)(PEI)浸渍到含有嵌入二氧化硅颗粒的膨胀聚(四氟乙烯)(ePTFE)片材基质中,形成适合纳入结构化气固接触器的独立片材。使用高度可扩展的湿法浸渍方法对独立片材进行PEI功能化。该方法使PEI分布可控,并在片材内部保留了足够的孔隙率,从而在干燥条件下实现了0.4至1.6 mmol CO₂/g的实际CO₂容量。在干燥和潮湿的变温循环下均实现了可逆的CO₂容量,表明该材料具有良好的稳定性。基于测得的CO₂和水容量,再生所需的比热能为287 kJ/mol CO₂,其中使用疏水材料实现了水与CO₂的摩尔比为3.1。这是已发表的DAC吸附剂中最低的摩尔比。在更接近大规模操作的条件下(线速度为0.03、‌0.05和0.1 m/sec)测试了一个更大的层压模块,该模块在五个CO₂吸附和蒸汽再生循环中表现出稳定的0.80 CO₂/g容量。PEI浸渍的ePTFE/二氧化硅复合吸附剂/接触器展示出了有前景的DAC性能,这源于疏水ePTFE域中含有的胺填充二氧化硅颗粒,可减少水吸附及其伴随的再生能量损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验