Suppr超能文献

载体结构和组成强烈影响负载胺对 CO2 的直接空气捕获。

Support Pore Structure and Composition Strongly Influence the Direct Air Capture of CO on Supported Amines.

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States.

出版信息

J Am Chem Soc. 2023 Apr 5;145(13):7190-7204. doi: 10.1021/jacs.2c12707. Epub 2023 Mar 27.

Abstract

A variety of amine-impregnated porous solid sorbents for direct air capture (DAC) of CO have been developed, yet the effect of amine-solid support interactions on the CO adsorption behavior is still poorly understood. When tetraethylenepentamine (TEPA) is impregnated on two different supports, commercial γ-AlO and MIL-101(Cr), they show different trends in CO sorption when the temperature (-20 to 25 °C) and humidity (0-70% RH) of the simulated air stream are varied. IR spectroscopy is used to probe the mechanism of CO sorption on the two supported amine materials, with weak chemisorption (formation of carbamic acid) being the dominant pathway over MIL-101(Cr)-supported TEPA and strong chemisorption (formation of carbamate) occurring over γ-AlO-supported TEPA. Formation of both carbamic acid and carbamate species is enhanced over the supported TEPA materials under humid conditions, with the most significant enhancement observed at -20 °C. However, while equilibrium HO sorption is high at cold temperatures (e.g., -20 °C), the effect of humidity on a practical cyclic DAC process is expected to be minimal due to slow HO uptake kinetics. This work suggests that the CO capture mechanisms of impregnated amines can be controlled by adjusting the degree of amine-solid support interaction and that HO adsorption behavior is strongly affected by the properties of the support materials. Thus, proper selection of solid support materials for amine impregnation will be important for achieving optimized DAC performance under varied deployment conditions, such as cold (e.g., -20 °C) or ambient temperature (e.g., 25 °C) operations.

摘要

已经开发出了多种用于直接空气捕集(DAC)CO 的胺浸渍多孔固体吸附剂,但胺-固体载体相互作用对 CO 吸附行为的影响仍知之甚少。当四乙烯五胺(TEPA)浸渍在两种不同的载体上,商业γ-AlO 和 MIL-101(Cr)时,当模拟气流的温度(-20 至 25°C)和湿度(0-70%RH)变化时,它们在 CO 吸附方面表现出不同的趋势。IR 光谱用于探测两种负载胺材料上 CO 吸附的机理,弱化学吸附(形成氨基甲酸)是 MIL-101(Cr)-负载 TEPA 的主要途径,而γ-AlO-负载 TEPA 则发生强化学吸附(形成氨基甲酸盐)。在潮湿条件下,负载 TEPA 材料上的氨基甲酸和氨基甲酸盐物种的形成都得到了增强,在-20°C 下观察到最显著的增强。然而,虽然在低温(例如-20°C)下 HO 吸附达到平衡,但湿度对实际循环 DAC 过程的影响预计很小,因为 HO 吸收动力学较慢。这项工作表明,浸渍胺的 CO 捕获机制可以通过调节胺-固体载体相互作用的程度来控制,并且 HO 吸附行为受到载体材料性质的强烈影响。因此,对于在不同部署条件下实现优化的 DAC 性能,例如在低温(例如-20°C)或环境温度(例如 25°C)下运行,适当选择用于胺浸渍的固体载体材料将非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1b1/10080690/13f70a8970b8/ja2c12707_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验