Suppr超能文献

外科医生变异性对 TKA 患者报告的结果测量、住院时间、出院处置和 90 天再入院的影响。

The Impact of Surgeon Variability on Patient-Reported Outcome Measures, Length of Stay, Discharge Disposition, and 90-Day Readmission in TKA.

机构信息

Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio.

Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, Ohio.

出版信息

J Bone Joint Surg Am. 2022 Nov 16;104(22):2016-2025. doi: 10.2106/JBJS.21.01339. Epub 2022 Aug 31.

Abstract

BACKGROUND

Studies involving total knee arthroplasty (TKA) have focused on patient-related factors as drivers of outcomes. Although some studies have investigated surgeon and/or surgery-level factors (i.e., approach, volume), the measure of variance in postoperative outcomes across surgeons following TKA has not been determined. The aim of the current study was to evaluate the relationship between the surgeon and 1-year patient-reported outcome measures, the length of stay, the discharge disposition, and 90-day readmission after TKA, as well as the differences in these variables among surgeons.

METHODS

Data were prospectively collected for 5,429 patients who underwent TKA at a large health-care system with 36 surgeons between 2016 and 2018. Likelihood ratio tests were performed to investigate the relationship between surgeon and the 1-year Knee injury and Osteoarthritis Outcome Score (KOOS)-Pain subscale, KOOS-Physical Function Shortform (KOOS-PS), KOOS for Joint Replacement (KOOS-JR), patient acceptable symptom state (PASS), length of stay, discharge disposition, and 90-day readmission. The minimal clinically important difference (MCID) was used to assess meaningful outcomes. Variable importance was determined by the Akaike information criterion (AIC) increase, using ordinal and binary-response mixed-effect models.

RESULTS

There was a significant association between surgeon and KOOS-Pain (p < 0.001), KOOS-PS (p = 0.001), KOOS-JR (p < 0.001), PASS (p = 0.024), length of stay (p < 0.001), discharge disposition (p < 0.001), and 90-day readmission (p < 0.001). When modeling 1-year KOOS-Pain (AIC increase, 15.6), KOOS-PS (AIC increase, 6.8), KOOS-JR (AIC increase, 13.5), PASS (AIC increase, 1.9), length of stay, and discharge disposition, the surgeon variable contributed more to the 1-year outcome than some patient-level factors (e.g., body mass index, Charlson Comorbidity Index). The difference between the highest and lowest median probabilities of attaining the same value for the KOOS-Pain (11.2%), KOOS-PS (9.4%), KOOS-JR (11.8%), PASS (5.9%), length of stay (46.6%), discharge disposition (22.8%), and readmission (13.1%) indicated surgeon-level variability.

CONCLUSIONS

Surgeon-related factors may be stronger contributors to the 1-year patient-reported outcome measures and length of stay than patient characteristics emphasized in the literature. Current findings have suggested variability in patient-reported outcome measures, length of stay, discharge location, and 90-day readmission among surgeons. Surgeon variability should be considered when model-fitting in the setting of TKA.

LEVEL OF EVIDENCE

Prognostic Level II . See Instructions for Authors for a complete description of levels of evidence.

摘要

背景

涉及全膝关节置换术(TKA)的研究主要关注患者相关因素对结果的影响。虽然一些研究已经调查了外科医生和/或手术水平因素(即入路、手术量),但 TKA 后外科医生之间术后结果的变异性尚未确定。本研究的目的是评估外科医生与 1 年患者报告的结果测量值、住院时间、出院去向以及 TKA 后 90 天再入院之间的关系,以及外科医生之间这些变量的差异。

方法

2016 年至 2018 年,在一家拥有 36 名外科医生的大型医疗保健系统中,前瞻性收集了 5429 例接受 TKA 的患者的数据。使用似然比检验来研究外科医生与 1 年膝关节损伤和骨关节炎结果评分(KOOS)-疼痛子量表、KOOS-物理功能简化版(KOOS-PS)、KOOS 关节置换(KOOS-JR)、患者可接受的症状状态(PASS)、住院时间、出院去向和 90 天再入院之间的关系。使用最小临床重要差异(MCID)来评估有意义的结果。通过使用有序和二项反应混合效应模型,根据 Akaike 信息准则(AIC)的增加来确定变量的重要性。

结果

外科医生与 KOOS-疼痛(p<0.001)、KOOS-PS(p=0.001)、KOOS-JR(p<0.001)、PASS(p=0.024)、住院时间(p<0.001)、出院去向(p<0.001)和 90 天再入院(p<0.001)之间存在显著关联。在对 1 年 KOOS-疼痛(AIC 增加,15.6)、KOOS-PS(AIC 增加,6.8)、KOOS-JR(AIC 增加,13.5)、PASS(AIC 增加,1.9)、住院时间和出院去向进行建模时,外科医生变量比一些患者水平因素(如体重指数、Charlson 合并症指数)对 1 年结局的贡献更大。KOOS-疼痛(11.2%)、KOOS-PS(9.4%)、KOOS-JR(11.8%)、PASS(5.9%)、住院时间(46.6%)、出院去向(22.8%)和再入院(13.1%)的最高和最低中位数概率差异表明存在外科医生水平的变异性。

结论

与文献中强调的患者特征相比,外科医生相关因素可能是 1 年患者报告的结果测量值和住院时间的更重要的决定因素。目前的研究结果表明,外科医生之间在患者报告的结果测量值、住院时间、出院地点和 90 天再入院方面存在差异。在 TKA 背景下进行模型拟合时,应考虑外科医生的变异性。

证据水平

预后 II 级。有关证据水平的完整描述,请参见作者说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验