Suppr超能文献

甲基化不足作为非综合征性唇腭裂的一种机制。

m hypomethylation as a mechanism for non-syndromic cleft lip and palate.

机构信息

Centro de Pesquisas sobre o Genoma Humano e Células Tronco, Universidade de São Paulo, Brasil.

出版信息

Epigenetics. 2022 Dec;17(13):2278-2295. doi: 10.1080/15592294.2022.2115606. Epub 2022 Sep 1.

Abstract

Non-syndromic cleft lip with or without cleft palate (NSCLP), the most common human craniofacial malformation, is a complex disorder given its genetic heterogeneity and multifactorial component revealed by genetic, epidemiological, and epigenetic findings. Epigenetic variations associated with NSCLP have been identified; however, functional investigation has been limited. Here, we combined a reanalysis of NSCLP methylome data with genetic analysis and used both and approaches to dissect the functional effects of epigenetic changes. We found a region in that is frequently hypomethylated in NSCLP cohorts (21-26%), leading to overexpression. overexpression in human neural crest cells led to downregulation of spliceosomal, ribosomal, and adherens junction genes. analysis using zebrafish embryos revealed that upregulation leads to craniofacial cartilage impairment. Also, we suggest that zebrafish embryonic hypoxia leads to upregulation combined with hypomethylation and also analogous palatal alterations. We therefore propose that hypomethylation, potentially induced by hypoxia in early development, is a novel and frequent predisposing factor to NSCLP.

摘要

非综合征性唇裂伴或不伴腭裂(NSCLP)是最常见的人类颅面畸形,鉴于其遗传异质性和遗传、流行病学和表观遗传研究揭示的多因素成分,属于一种复杂的疾病。已经确定了与 NSCLP 相关的表观遗传变异,但功能研究受到限制。在这里,我们结合了对 NSCLP 甲基组数据的重新分析以及遗传分析,并使用 和 方法来剖析表观遗传变化的功能影响。我们发现 中一个区域在 NSCLP 队列中经常呈低甲基化状态(21-26%),导致 过表达。在人类神经嵴细胞中过表达 导致剪接体、核糖体和黏着连接基因下调。使用斑马鱼胚胎进行 分析表明, 上调导致颅面软骨损伤。此外,我们还表明,斑马鱼胚胎缺氧会导致 上调,同时伴有 低甲基化和类似的腭裂改变。因此,我们提出,早期发育过程中的缺氧可能导致 的低甲基化是 NSCLP 的一个新的常见致病因素。

相似文献

1
m hypomethylation as a mechanism for non-syndromic cleft lip and palate.
Epigenetics. 2022 Dec;17(13):2278-2295. doi: 10.1080/15592294.2022.2115606. Epub 2022 Sep 1.
2
Progress of epigenetic modification of SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate.
Asian J Surg. 2024 Jan;47(1):72-76. doi: 10.1016/j.asjsur.2023.09.113. Epub 2023 Oct 16.
4
Knockdown of Crispld2 in zebrafish identifies a novel network for nonsyndromic cleft lip with or without cleft palate candidate genes.
Eur J Hum Genet. 2018 Oct;26(10):1441-1450. doi: 10.1038/s41431-018-0192-5. Epub 2018 Jun 13.
5
Association of IFT88 gene variants with nonsyndromic cleft lip with or without cleft palate.
Birth Defects Res. 2019 Jul 1;111(11):659-665. doi: 10.1002/bdr2.1504. Epub 2019 Apr 5.
6
Variation in WNT genes is associated with non-syndromic cleft lip with or without cleft palate.
Hum Mol Genet. 2008 Jul 15;17(14):2212-8. doi: 10.1093/hmg/ddn121. Epub 2008 Apr 14.

引用本文的文献

1
Genetic-epigenetic interactions (meQTLs) in orofacial clefts etiology.
medRxiv. 2025 Feb 12:2025.02.09.25321494. doi: 10.1101/2025.02.09.25321494.
2
MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate.
Int J Mol Sci. 2023 Feb 10;24(4):3552. doi: 10.3390/ijms24043552.

本文引用的文献

1
Identification of microRNAs and gene regulatory networks in cleft lip common in humans and mice.
Hum Mol Genet. 2021 Sep 15;30(19):1881-1893. doi: 10.1093/hmg/ddab151.
2
Identification of New miRNA-mRNA Networks in the Development of Non-syndromic Cleft Lip With or Without Cleft Palate.
Front Cell Dev Biol. 2021 Mar 1;9:631057. doi: 10.3389/fcell.2021.631057. eCollection 2021.
3
Craniofacial transitions: the role of EMT and MET during head development.
Development. 2021 Feb 15;148(4):dev196030. doi: 10.1242/dev.196030.
4
Zebrafish Models of Craniofacial Malformations: Interactions of Environmental Factors.
Front Cell Dev Biol. 2020 Nov 16;8:600926. doi: 10.3389/fcell.2020.600926. eCollection 2020.
5
Non-syndromic Cleft Palate: An Overview on Human Genetic and Environmental Risk Factors.
Front Cell Dev Biol. 2020 Oct 20;8:592271. doi: 10.3389/fcell.2020.592271. eCollection 2020.
6
Transcriptional analysis of cleft palate in TGFβ3 mutant mice.
Sci Rep. 2020 Sep 10;10(1):14940. doi: 10.1038/s41598-020-71636-0.
7
RNASeqR: An R Package for Automated Two-Group RNA-Seq Analysis Workflow.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):2023-2031. doi: 10.1109/TCBB.2019.2956708. Epub 2021 Oct 7.
10
Network-based identification of critical regulators as putative drivers of human cleft lip.
BMC Med Genomics. 2019 Jan 31;12(Suppl 1):16. doi: 10.1186/s12920-018-0458-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验