Yi Di, Liu Jian, Hsu Shang-Lin, Zhang Lipeng, Choi Yongseong, Kim Jong-Woo, Chen Zuhuang, Clarkson James D, Serrao Claudy R, Arenholz Elke, Ryan Philip J, Xu Haixuan, Birgeneau Robert J, Ramesh Ramamoorthy
Department of Materials Science and Engineering, University of California, Berkeley, CA 94720;
Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996; Department of Physics, University of California, Berkeley, CA 94720; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6397-402. doi: 10.1073/pnas.1524689113. Epub 2016 May 19.
Magnetic anisotropy (MA) is one of the most important material properties for modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e., magnetocrystalline anisotropy (MCA), typically depends upon crystal symmetry. Extrinsic control over the MA is usually achieved by introducing shape anisotropy or exchange bias from another magnetically ordered material. Here we demonstrate a pathway to manipulate MA of 3d transition-metal oxides (TMOs) by digitally inserting nonmagnetic 5d TMOs with pronounced spin-orbit coupling (SOC). High-quality superlattices comprising ferromagnetic La2/3Sr1/3MnO3 (LSMO) and paramagnetic SrIrO3 (SIO) are synthesized with the precise control of thickness at the atomic scale. Magnetic easy-axis reorientation is observed by controlling the dimensionality of SIO, mediated through the emergence of a novel spin-orbit state within the nominally paramagnetic SIO.
磁各向异性(MA)是现代自旋电子器件最重要的材料特性之一。对本征MA,即磁晶各向异性(MCA)的传统操控通常取决于晶体对称性。对MA的外在控制通常是通过引入形状各向异性或来自另一种磁有序材料的交换偏置来实现的。在此,我们展示了一种通过数字插入具有显著自旋轨道耦合(SOC)的非磁性5d过渡金属氧化物(TMO)来操控3d TMO的MA的途径。通过在原子尺度上精确控制厚度,合成了由铁磁体La2/3Sr1/3MnO3(LSMO)和顺磁体SrIrO3(SIO)组成的高质量超晶格。通过控制SIO的维度观察到磁易轴重取向,这是由名义上顺磁的SIO中出现的新型自旋轨道态介导的。