Chen Wang-Chien, Chang Chia-Wei, Yang Shang-Hua
Opt Lett. 2022 Sep 1;47(17):4411-4414. doi: 10.1364/OL.464541.
THz photoconductive emitters based on III-V materials have demonstrated excellent THz radiation properties, enabling many unique applications. However, the incompatibility with the complementary-metal-oxide-semiconductor (CMOS) foundry fabrication process and the challenging growth condition hampers THz photoconductive emitters from large-scale production. To address this limitation, we proposed the GeSn alloy as the photoconductive material candidate through the CMOS-compatible epitaxy instrument. The GeSn photoconductor features a 518 cm/V-s mobility and a 7187 cm absorption coefficient at the wavelength of 1560 nm, resulting in sufficiently ultrafast photocurrent generation for THz radiation. As a result, the GeSn THz emitter provides over a bandwidth of 2 THz and a 40 dB signal-to-noise ratio, which shows its potential in realizing mass-producible, cost-effective THz integrated systems with CMOS technology.
基于III-V族材料的太赫兹光电导发射器已展现出优异的太赫兹辐射特性,可实现许多独特应用。然而,与互补金属氧化物半导体(CMOS)代工制造工艺的不兼容性以及具有挑战性的生长条件阻碍了太赫兹光电导发射器的大规模生产。为解决这一限制,我们通过CMOS兼容外延仪器提出将GeSn合金作为光电导材料候选。该GeSn光电导体在1560nm波长处具有518cm/V·s的迁移率和7187cm的吸收系数,从而能够产生足够超快的光电流用于太赫兹辐射。结果,GeSn太赫兹发射器提供超过2THz的带宽和40dB的信噪比,这表明其在利用CMOS技术实现可大规模生产、具有成本效益的太赫兹集成系统方面的潜力。