Suppr超能文献

社会人口决定因素对孟加拉国最富和最穷妇女营养差距的解释作用:分解方法。

Contribution of sociodemographic determinants in explaining the nutritional gap between the richest-poorest women of Bangladesh: A decomposition approach.

机构信息

Department of Statistics, Comilla University, Kotbari, Bangladesh.

Department of Social Relations, East West University, Aftabnagar, Dhaka, Bangladesh.

出版信息

PLoS One. 2022 Sep 1;17(9):e0273833. doi: 10.1371/journal.pone.0273833. eCollection 2022.

Abstract

BACKGROUND

Malnutrition among women disproportionately exists across socioeconomic classes of Bangladesh. According to our knowledge, studies which attempted to identify determinants and their contributions to explain BMI-based nutritional gap between the poorest and the richest categories of Wealth Index are still scarce.

OBJECTIVES

To identify the nutritional gap of women between the richest-poorest classes in Bangladesh, and to determine how much of this gap are attributed to differences in predictors and differences in coefficients.

STUDY POPULATION

Reproductive-aged (15-49 years) women of Bangladesh.

METHODS AND PROCEDURES

We utilized the latest round (2017-2018) data of the Bangladesh Demographic and Health Survey (BDHS). Body mass index (BMI) has been used to measure the nutritional status of women. The kernel density was used to visualize the nutritional gap. The Oaxaca-Blinder (OB) decomposition method was used to ascertain influential determinants and their contributions to the existing gap between the richest-poorest classes of women.

RESULTS

We analyzed the data of 18,682 reproductive-aged women. There was a significant mean BMI gap of 4.1 unit (95% CI: 3.90-4.35) between the poorest-richest (25.6 vs 21.5) women. The overall prevalence of underweight, overweight and obese were 11.8%, 33.8% and 15.4%, respectively. The richest women were less underweight (7.5%) but more overweight (23.7%) and obese (42.2%). In contrast, the poorest women were more underweight (32.0%) but less overweight (13.9%) and obese (7.0%). According to results of OB decomposition method, all predictors combinedly can explain 1.62 units (95% CI: 1.31-1.93) of the total mean BMI gap (equivalent to 40%). Some of the major predictors were women years of education (0.45 units, 95% CI: 0.27-0.64), spouse years of education (0.16 units, 95% CI: -0.02-0.34), current working status (0.17 units, 95% CI: 0.10-0.34), access to Television (0.50 units, 95% CI: 0.28-0.72), and place of residence (0.37 units, 95% CI: 0.22-0.72). The unexplained part of the poorest-richest gap was 2.51 units (95% CI: 2.13-2.89), which means that this particular gap will remain unchanged even though the mean difference of the predictors was diminished.

CONCLUSIONS

A large part of the nutritional gap (approximately 60%) between the poorest and richest classes of women are found to be unchanged by the predictors of the study. Therefore, further predictors should be identified to minimize such gap. Moreover, policy makers and relevant stakeholders should implement feasible strategies to minimize the existing differences in the major predictors.

摘要

背景

在孟加拉国,女性营养不良的现象在社会经济阶层中普遍存在。据我们所知,试图确定决定因素及其对解释最贫穷和最富有财富指数类别的 BMI 为基础的营养差距的贡献的研究仍然很少。

目的

确定孟加拉国最富和最穷两类妇女之间的营养差距,并确定差距中有多少归因于预测因素的差异和系数的差异。

研究人群

孟加拉国 15-49 岁的育龄妇女。

方法和程序

我们利用了孟加拉国人口与健康调查(BDHS)的最新一轮(2017-2018 年)数据。体重指数(BMI)用于衡量妇女的营养状况。核密度用来可视化营养差距。采用奥克萨卡-布兰德(OB)分解法确定有影响力的决定因素及其对最富和最穷妇女阶层之间现有差距的贡献。

结果

我们分析了 18682 名育龄妇女的数据。最富和最穷妇女之间的平均 BMI 差距为 4.1 个单位(95%CI:3.90-4.35)。体重不足、超重和肥胖的总体患病率分别为 11.8%、33.8%和 15.4%。最富有的妇女体重不足(7.5%)较少,但超重(23.7%)和肥胖(42.2%)较多。相比之下,最贫穷的妇女体重不足(32.0%)较多,但超重(13.9%)和肥胖(7.0%)较少。根据 OB 分解法的结果,所有预测因素加起来可以解释总平均 BMI 差距的 1.62 个单位(95%CI:1.31-1.93)(相当于 40%)。一些主要的预测因素是妇女的受教育年限(0.45 个单位,95%CI:0.27-0.64)、配偶的受教育年限(0.16 个单位,95%CI:-0.02-0.34)、当前工作状况(0.17 个单位,95%CI:0.10-0.34)、获得电视(0.50 个单位,95%CI:0.28-0.72)和居住地(0.37 个单位,95%CI:0.22-0.72)。最贫穷和最富有阶层差距中无法解释的部分为 2.51 个单位(95%CI:2.13-2.89),这意味着即使预测因素的平均值差异减小,这种特殊差距仍将保持不变。

结论

研究发现,最贫穷和最富有妇女阶层之间的营养差距(约 60%)中有很大一部分没有因研究中的预测因素而改变。因此,应确定进一步的预测因素,以尽量减少这种差距。此外,政策制定者和相关利益攸关方应实施可行的战略,尽量减少主要预测因素方面的现有差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485d/9436068/d28a18c1ed83/pone.0273833.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验