Suppr超能文献

通过卷曲二硫化钼纳米片实现强各向异性光学性质

Strong Anisotropic Optical Properties by Rolling up MoS Nanoflake.

作者信息

Wang Runqiu, Guo Shuai, Li Zhonglin, Weller Dieter, Quan Sufeng, Yu Jing, Wu Mengxuan, Jiang Jie, Wang Yingying, Liu Ruibin

机构信息

School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.

Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstr. 1, Duisburg 47057, Germany.

出版信息

J Phys Chem Lett. 2022 Sep 15;13(36):8409-8415. doi: 10.1021/acs.jpclett.2c02072. Epub 2022 Sep 1.

Abstract

Although anisotropic two-dimensional materials have attracted great scientific interest, the anisotropy of those materials is limited to particular crystallographic directions. Herein, with dimension confining, MoS nanoscrolls are successfully fabricated by a rolling-up process after dropping an ethanol-water solution on a chemical vapor deposition-grown MoS monolayer. The anisotropic vibrational and optical properties are systematically studied by angle-resolved polarized spectroscopy, including Raman, photoluminescence, and reflection measurements. Upon comparing the photoluminescence results between MoS nanoscrolls and nanosheets, an obvious PL quenching phenomenon is observed, indicating the efficient separation of photon-induced carriers. Moreover, the time-resolved PL test identifying the lifetime of the carriers is decreased to 303 ps in the nanoscrolls, indicating a higher carrier-transfer efficiency. In summary, our work demonstrates the strong anisotropic optical properties of MoS nanorolls, showing the nanoscrolls are a promising candidate for the fabrication of multifunctional devices.

摘要

尽管各向异性二维材料引起了极大的科学兴趣,但这些材料的各向异性仅限于特定的晶体学方向。在此,通过尺寸限制,在化学气相沉积生长的MoS单层上滴加乙醇-水溶液后,通过卷绕工艺成功制备了MoS纳米卷。通过角分辨偏振光谱系统地研究了其各向异性振动和光学性质,包括拉曼光谱、光致发光光谱和反射测量。通过比较MoS纳米卷和纳米片之间的光致发光结果,观察到明显的光致发光猝灭现象,表明光子诱导载流子的有效分离。此外,时间分辨光致发光测试确定纳米卷中载流子的寿命降至303 ps,表明载流子转移效率更高。总之,我们的工作证明了MoS纳米卷具有很强的各向异性光学性质,表明纳米卷是制造多功能器件的有前途的候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验