Suppr超能文献

基于主成分分析和级联森林的微小RNA-疾病关联预测

Prediction of miRNA-disease associations based on PCA and cascade forest.

作者信息

Zhang Chuanlei, Li Yubo, Dong Yinglun, Chen Wei, Yu Changqing

机构信息

Artificial Intelligence, Tianjin University of Science and Technology, Tianjin, 300457, China.

Computer Science, China University of Mining and Technology, Xuzhou, 221116, China.

出版信息

BMC Bioinformatics. 2024 Dec 19;25(1):386. doi: 10.1186/s12859-024-05999-w.

Abstract

BACKGROUND

As a key non-coding RNA molecule, miRNA profoundly affects gene expression regulation and connects to the pathological processes of several kinds of human diseases. However, conventional experimental methods for validating miRNA-disease associations are laborious. Consequently, the development of efficient and reliable computational prediction models is crucial for the identification and validation of these associations.

RESULTS

In this research, we developed the PCACFMDA method to predict the potential associations between miRNAs and diseases. To construct a multidimensional feature matrix, we consider the fusion similarities of miRNA and disease and miRNA-disease pairs. We then use principal component analysis(PCA) to reduce data complexity and extract low-dimensional features. Subsequently, a tuned cascade forest is used to mine the features and output prediction scores deeply. The results of the 5-fold cross-validation using the HMDD v2.0 database indicate that the PCACFMDA algorithm achieved an AUC of 98.56%. Additionally, we perform case studies on breast, esophageal and lung neoplasms. The findings revealed that the top 50 miRNAs most strongly linked to each disease have been validated.

CONCLUSIONS

Based on PCA and optimized cascade forests, we propose the PCACFMDA model for predicting undiscovered miRNA-disease associations. The experimental results demonstrate superior prediction performance and commendable stability. Consequently, the PCACFMDA is a potent instrument for in-depth exploration of miRNA-disease associations.

摘要

背景

作为一种关键的非编码RNA分子,微小RNA(miRNA)深刻影响基因表达调控,并与多种人类疾病的病理过程相关。然而,用于验证miRNA与疾病关联的传统实验方法费力。因此,开发高效可靠的计算预测模型对于识别和验证这些关联至关重要。

结果

在本研究中,我们开发了PCACFMDA方法来预测miRNA与疾病之间的潜在关联。为构建多维特征矩阵,我们考虑了miRNA与疾病以及miRNA-疾病对的融合相似性。然后我们使用主成分分析(PCA)来降低数据复杂性并提取低维特征。随后,使用调优的级联森林来深度挖掘特征并输出预测分数。使用HMDD v2.0数据库进行的五折交叉验证结果表明,PCACFMDA算法的曲线下面积(AUC)达到了98.56%。此外,我们对乳腺癌、食管癌和肺癌进行了案例研究。结果显示,与每种疾病关联最紧密的前50个miRNA已得到验证。

结论

基于主成分分析和优化的级联森林,我们提出了用于预测未发现的miRNA-疾病关联的PCACFMDA模型。实验结果证明了其卓越的预测性能和良好的稳定性。因此,PCACFMDA是深入探索miRNA-疾病关联的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5c/11660965/8be3071b2687/12859_2024_5999_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验