State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu, China; Peng Cheng Laboratory, Shenzhen, China.
J Biol Chem. 2022 Oct;298(10):102440. doi: 10.1016/j.jbc.2022.102440. Epub 2022 Aug 30.
The protostome leucokinin (LK) signaling system, including LK peptides and their G protein-coupled receptors, has been characterized in several species. Despite the progress, molecular mechanisms governing LK peptide-receptor interactions remain to be elucidated. Previously, we identified a precursor protein for Aplysia leucokinin-like peptides (ALKs) that contains the greatest number of amidated peptides among LK precursors in all species identified so far. Here, we identified the first ALK receptor from Aplysia, ALKR. We used cell-based IP1 activation assays to demonstrate that two ALK peptides with the most copies, ALK1 and ALK2, activated ALKR with high potencies. Other endogenous ALK-derived peptides bearing the FXXWX-amide motif also activated ALKR to various degrees. Our examination of cross-species activity of ALKs with the Anopheles LK receptor was consistent with a critical role for the FXXWX-amide motif in receptor activity. Furthermore, we showed, through alanine substitution of ALK1, the highly conserved phenylalanine (F), tryptophan (W), and C-terminal amidation were each essential for receptor activation. Finally, we used an artificial intelligence-based protein structure prediction server (Robetta) and Autodock Vina to predict the ligand-bound conformation of ALKR. Our model predicted several interactions (i.e., hydrophobic interactions, hydrogen bonds, and amide-pi stacking) between ALK peptides and ALKR, and several of our substitution and mutagenesis experiments were consistent with the predicted model. In conclusion, our results provide important information defining possible interactions between ALK peptides and their receptors. The workflow utilized here may be useful for studying other ligand-receptor interactions for a neuropeptide signaling system, particularly in protostomes.
原肠胚动物脑肠肽 (LK) 信号系统,包括 LK 肽及其 G 蛋白偶联受体,已在多个物种中得到鉴定。尽管已经取得了进展,但调控 LK 肽-受体相互作用的分子机制仍有待阐明。之前,我们鉴定了一种 Aplysia 脑肠肽样肽 (ALKs) 的前体蛋白,它包含了迄今为止在所有已鉴定物种的 LK 前体中数量最多的酰胺化肽。在这里,我们鉴定了第一个 Aplysia 的 ALK 受体,ALKR。我们使用基于细胞的 IP1 激活测定来证明,两种具有最多拷贝数的 ALK 肽,ALK1 和 ALK2,以高亲和力激活 ALKR。其他具有 FXXWX-酰胺基序的内源性 ALK 衍生肽也以不同程度激活了 ALKR。我们对 ALKs 与疟蚊 LK 受体的跨物种活性的研究表明,FXXWX-酰胺基序在受体活性中起着关键作用。此外,我们通过 ALK1 的丙氨酸取代表明,高度保守的苯丙氨酸 (F)、色氨酸 (W) 和 C 末端酰胺化对于受体激活都是必不可少的。最后,我们使用基于人工智能的蛋白质结构预测服务器 (Robetta) 和 Autodock Vina 来预测 ALKR 的配体结合构象。我们的模型预测了 ALK 肽和 ALKR 之间的几种相互作用(即疏水相互作用、氢键和酰胺-π堆积),并且我们的一些取代和突变实验与预测模型一致。总之,我们的结果提供了关于 ALK 肽与其受体之间可能相互作用的重要信息。这里使用的工作流程可能对研究其他神经肽信号系统的配体-受体相互作用有用,特别是在原肠胚动物中。