Suppr超能文献

噪声诱导的 FitzHugh-Nagumo 神经元动力学稳定化:多稳定性和暂态混沌。

Noise-induced stabilization of the FitzHugh-Nagumo neuron dynamics: Multistability and transient chaos.

机构信息

Departamento de Física, Universidade do Estado de Santa Catarina, 89219-710 Joinville, SC, Brazil.

Departamento de Física, Universidade Federal do Paraná, 81531-980 Curitiba, PR, Brazil.

出版信息

Chaos. 2022 Aug;32(8):083102. doi: 10.1063/5.0086994.

Abstract

The nonlinear dynamics of a FitzHugh-Nagumo (FHN) neuron driven by an oscillating current and perturbed by a Gaussian noise signal with different intensities D is investigated. In the noiseless case, stable periodic structures [Arnold tongues (ATS), cuspidal and shrimp-shaped] are identified in the parameter space. The periods of the ATSs obey specific generating and recurrence rules and are organized according to linear Diophantine equations responsible for bifurcation cascades. While for small values of D, noise starts to destroy elongations ("antennas") of the cuspidals, for larger values of D, the periodic motion expands into chaotic regimes in the parameter space, stabilizing the chaotic motion, and a transient chaotic motion is observed at the periodic-chaotic borderline. Besides giving a detailed description of the neuronal dynamics, the intriguing novel effect observed for larger D values is the generation of a regular dynamics for the driven FHN neuron. This result has a fundamental importance if the complex local dynamics is considered to study the global behavior of the neural networks when parameters are simultaneously varied, and there is the necessity to deal the intrinsic stochastic signal merged into the time series obtained from real experiments. As the FHN model has crucial properties presented by usual neuron models, our results should be helpful in large-scale simulations using complex neuron networks and for applications.

摘要

研究了受振荡电流驱动且受不同强度 D 的高斯噪声信号干扰的 FitzHugh-Nagumo(FHN)神经元的非线性动力学。在无噪声情况下,在参数空间中识别出稳定的周期结构[Arnold 舌(ATS)、尖峰和虾形]。ATS 的周期遵循特定的生成和递归规则,并根据负责分岔级联的线性丢番图方程进行组织。虽然对于较小的 D 值,噪声开始破坏尖峰的伸长(“天线”),但对于较大的 D 值,周期性运动在参数空间中扩展到混沌区域,稳定了混沌运动,并在周期性-混沌边界处观察到瞬态混沌运动。除了详细描述神经元动力学之外,对于较大的 D 值观察到的有趣的新效应是为驱动的 FHN 神经元产生规则的动力学。如果复杂的局部动力学被认为是在同时改变参数时研究神经网络的全局行为的基础,并且有必要处理合并到从实际实验中获得的时间序列中的内在随机信号,那么这个结果就具有重要的意义。由于 FHN 模型具有通常神经元模型所具有的关键性质,因此我们的结果应该有助于使用复杂神经元网络进行大规模模拟以及应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验