Suppr超能文献

对实现Fitzhugh-Nagumo神经元模型的数字电路进行动态检查,重点关注低功耗和高精度。

A dynamic examination of the digital circuit implementing the Fitzhugh-Nagumo neuron model with emphasis on low power consumption and high precision.

作者信息

Nadiri Andabili Mehdi, Nazari Soheila, Moosazadeh Tohid

机构信息

Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.

出版信息

PLoS One. 2025 Aug 20;20(8):e0327595. doi: 10.1371/journal.pone.0327595. eCollection 2025.

Abstract

Neuromorphic computing has got more attention in various tasks during recent years. The main goal of this field is to explore neural functionality in the brain. The studies of spiking neurons and Spiking Neural Networks (SNNs) are vital to understand how brain-inspired neural system work. In this paper, the modified Fitzhugh-Nagumo (FHN) model is proposed based on Coordinate Rotation Digital Computer (CORDIC) algorithm to emulate biological behaviors of the original neuron model. The presented CORDIC method eliminates multipliers by using adder and shifter operations, which provides efficient digital hardware implementation of the FHN model. Error analysis and dynamic assessments confirm that the CORDIC-based FHN model is capable to follow the biological behaviors of the original model with high accuracy. Additionally, to further check the compatibility of the CORDIC-based FHN model with the original model, chaotic behaviors of both models on bifurcation and maximum Lyapunov exponent diagrams are investigated. Considering that the CORDIC-based FHN model has a high compatibility with the original model, its superiority over the original model is the possibility of hardware implementation with low power consumption. To analyze further, two cost functions are defined based on operation frequency, power, and error to confirm the efficiency of the proposed hardware compared to previous studies. As a result of its low power consumption, minimal error rates, and high-frequency capabilities, the proposed hardware demonstrates effectiveness and utility across a range of applications, including the simulation of learning processes in the nervous system that are based on nonlinear and chaotic behaviors.

摘要

近年来,神经形态计算在各种任务中受到了更多关注。该领域的主要目标是探索大脑中的神经功能。对脉冲神经元和脉冲神经网络(SNNs)的研究对于理解受大脑启发的神经系统如何工作至关重要。本文提出了基于坐标旋转数字计算机(CORDIC)算法的改进型Fitzhugh-Nagumo(FHN)模型,以模拟原始神经元模型的生物行为。所提出的CORDIC方法通过加法器和移位器操作消除了乘法器,为FHN模型提供了高效的数字硬件实现。误差分析和动态评估证实,基于CORDIC的FHN模型能够高精度地模拟原始模型的生物行为。此外,为了进一步检验基于CORDIC的FHN模型与原始模型的兼容性,研究了两个模型在分岔图和最大Lyapunov指数图上的混沌行为。鉴于基于CORDIC的FHN模型与原始模型具有高度兼容性,其相对于原始模型的优势在于具有低功耗硬件实现的可能性。为了进一步分析,基于操作频率、功耗和误差定义了两个成本函数,以确认所提出硬件相对于先前研究的效率。由于其低功耗、最小错误率和高频能力,所提出的硬件在一系列应用中都展示了有效性和实用性,包括对基于非线性和混沌行为的神经系统学习过程的模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d3c/12367121/73c93facc1ea/pone.0327595.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验