Suppr超能文献

使用流形学习、径向基函数插值和几何调和函数的时间序列预测。

Time-series forecasting using manifold learning, radial basis function interpolation, and geometric harmonics.

作者信息

Papaioannou Panagiotis G, Talmon Ronen, Kevrekidis Ioannis G, Siettos Constantinos

机构信息

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli," Università degli Studi di Napoli Federico II, Naples 80126, Italy.

Viterbi Faculty of Electrical and Computer Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel.

出版信息

Chaos. 2022 Aug;32(8):083113. doi: 10.1063/5.0094887.

Abstract

We address a three-tier numerical framework based on nonlinear manifold learning for the forecasting of high-dimensional time series, relaxing the "curse of dimensionality" related to the training phase of surrogate/machine learning models. At the first step, we embed the high-dimensional time series into a reduced low-dimensional space using nonlinear manifold learning (local linear embedding and parsimonious diffusion maps). Then, we construct reduced-order surrogate models on the manifold (here, for our illustrations, we used multivariate autoregressive and Gaussian process regression models) to forecast the embedded dynamics. Finally, we solve the pre-image problem, thus lifting the embedded time series back to the original high-dimensional space using radial basis function interpolation and geometric harmonics. The proposed numerical data-driven scheme can also be applied as a reduced-order model procedure for the numerical solution/propagation of the (transient) dynamics of partial differential equations (PDEs). We assess the performance of the proposed scheme via three different families of problems: (a) the forecasting of synthetic time series generated by three simplistic linear and weakly nonlinear stochastic models resembling electroencephalography signals, (b) the prediction/propagation of the solution profiles of a linear parabolic PDE and the Brusselator model (a set of two nonlinear parabolic PDEs), and (c) the forecasting of a real-world data set containing daily time series of ten key foreign exchange rates spanning the time period 3 September 2001-29 October 2020.

摘要

我们提出了一种基于非线性流形学习的三层数值框架,用于预测高维时间序列,缓解与替代/机器学习模型训练阶段相关的“维度诅咒”。第一步,我们使用非线性流形学习(局部线性嵌入和简约扩散映射)将高维时间序列嵌入到降维的低维空间中。然后,我们在流形上构建降阶替代模型(在此,为了说明,我们使用了多元自回归和高斯过程回归模型)来预测嵌入的动态。最后,我们解决原像问题,从而使用径向基函数插值和几何调和函数将嵌入的时间序列提升回原始的高维空间。所提出的数值数据驱动方案还可以用作偏微分方程(PDE)(瞬态)动态数值解/传播的降阶模型过程。我们通过三类不同的问题评估所提出方案的性能:(a)由三个类似于脑电图信号的简单线性和弱非线性随机模型生成的合成时间序列预测;(b)线性抛物型PDE和布鲁塞尔振子模型(一组两个非线性抛物型PDE)解轮廓的预测/传播;(c)包含2001年9月3日至2020年10月29日期间十个主要外汇每日时间序列的真实数据集预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验