Saitow Masaaki, Uemura Kazuma, Yanai Takeshi
Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan.
J Chem Phys. 2022 Aug 28;157(8):084101. doi: 10.1063/5.0094777.
The multireference second-order perturbation theory (CASPT2) is known to deliver a quantitative description of various complex electronic states. Despite its near-size-consistent nature, the applicability of the CASPT2 method to large, real-life systems is mostly hindered by large computational and storage costs for the two-external tensors, such as two-electron integrals, amplitudes, and residuum. To this end, Menezes and co-workers developed a reduced-scaling CASPT2 scheme by incorporating the local pair-natural orbital (PNO) representation of the many-body wave functions using non-orthonormal projected atomic orbitals (PAOs) into the CASPT theory [F. Menezes et al., J. Chem. Phys. 145, 124115 (2016)]. Alternatively, in this paper, we develop a new PNO-based CASPT2 scheme using the orthonormal localized virtual molecular orbitals (LVMOs) and assess its performance and accuracy in comparison with the conventional PAO-based counterpart. Albeit the compactness, the LVMOs were considered to perform somewhat poorly compared to PAOs in the local correlation framework because they caused enormously large orbital domains. In this work, we show that the size of LVMO domains can be rendered comparable to or even smaller than that of PAOs by the use of the differential overlap integrals for domain construction. Optimality of the MOs from the CASSCF treatment is a key to reducing the LVMO domain size for the multireference case. Due to the augmented Hessian-based localization algorithm, an additional computational cost for obtaining the LVMOs is relatively minor. We demonstrate that the LVMO-based PNO-CASPT2 method is routinely applicable to large, real-life molecules such as Menshutkin S2 reaction in a single-walled carbon nanotube reaction field.
多参考二阶微扰理论(CASPT2)能够对各种复杂电子态进行定量描述。尽管其具有近似尺寸一致性的特性,但CASPT2方法在应用于大型实际体系时,大多受到两个外部张量(如双电子积分、振幅和残差)巨大的计算和存储成本的阻碍。为此,梅内塞斯及其同事通过将使用非正交投影原子轨道(PAO)的多体波函数的局部对自然轨道(PNO)表示纳入CASPT理论,开发了一种缩尺CASPT2方案[F. 梅内塞斯等人,《化学物理杂志》145, 124115 (2016)]。另外,在本文中,我们使用正交归一化的局域虚拟分子轨道(LVMO)开发了一种新的基于PNO的CASPT2方案,并与传统的基于PAO的方案相比评估其性能和准确性。尽管LVMO具有紧凑性,但在局部相关框架中,与PAO相比,LVMO被认为表现稍差,因为它们会导致极大的轨道域。在这项工作中,我们表明通过使用用于域构建的微分重叠积分,LVMO域的大小可以变得与PAO相当甚至更小。对于多参考情况,来自CASSCF处理的分子轨道的最优性是减小LVMO域大小的关键。由于基于增强海森矩阵的定位算法,获得LVMO的额外计算成本相对较小。我们证明基于LVMO的PNO-CASPT2方法通常适用于大型实际分子,如单壁碳纳米管反应场中的门舒特金S2反应。