Suppr超能文献

利用声学矢量传感器进行陆地生物声学的声源分离。

Source separation with an acoustic vector sensor for terrestrial bioacoustics.

机构信息

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, New York 14850, USA.

出版信息

J Acoust Soc Am. 2022 Aug;152(2):1123. doi: 10.1121/10.0013505.

Abstract

Passive acoustic monitoring is emerging as a low-cost, non-invasive methodology for automated species-level population surveys. However, systems for automating the detection and classification of vocalizations in complex soundscapes are significantly hindered by the overlap of calls and environmental noise. We propose addressing this challenge by utilizing an acoustic vector sensor to separate contributions from different sound sources. More specifically, we describe and implement an analytical pipeline consisting of (1) calculating direction-of-arrival, (2) decomposing the azimuth estimates into angular distributions for individual sources, and (3) numerically reconstructing source signals. Using both simulation and experimental recordings, we evaluate the accuracy of direction-of-arrival estimation through the active intensity method (AIM) against the baselines of white noise gain constraint beamforming (WNC) and multiple signal classification (MUSIC). Additionally, we demonstrate and compare source signal reconstruction with simple angular thresholding and a wrapped Gaussian mixture model. Overall, we show that AIM achieves higher performance than WNC and MUSIC, with a mean angular error of about 5°, robustness to environmental noise, flexible representation of multiple sources, and high fidelity in source signal reconstructions.

摘要

被动声学监测作为一种低成本、非侵入性的方法,正在成为自动化物种水平种群调查的手段。然而,自动化检测和分类复杂声音环境中发声的系统受到叫声和环境噪声重叠的严重阻碍。我们提出利用声矢量传感器来分离来自不同声源的贡献,以解决这一挑战。具体来说,我们描述并实现了一个分析管道,包括(1)计算到达方向,(2)将方位估计分解为各个声源的角分布,以及(3)数值重建源信号。通过使用模拟和实验记录,我们通过主动强度法(AIM)与白噪声增益约束波束形成(WNC)和多信号分类(MUSIC)的基线进行了到达方向估计准确性的评估。此外,我们展示并比较了简单角度阈值法和缠绕高斯混合模型的源信号重建。总的来说,我们表明 AIM 比 WNC 和 MUSIC 具有更高的性能,平均角度误差约为 5°,对环境噪声具有鲁棒性,能够灵活表示多个声源,并具有高保真度的源信号重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验