Umadi Ravi
Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.
BMC Ecol Evol. 2025 Sep 8;25(1):92. doi: 10.1186/s12862-025-02441-4.
Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy. The framework supports both frequency-modulated (FM) and constant-frequency (CF) call types, the latter characteristic of Hipposiderid and Rhinolophid bats, which are particularly prone to localisation errors due to their long-duration emissions. A key innovation is the integration of source motion modelling during call emission, which introduces Doppler-based time warping and phase shifts across microphones-an important and often overlooked source of error in source localisation. I systematically compare four array geometries-a planar square, a pyramid, a tetrahedron, and an octahedron-across a volumetric spatial grid. The tetrahedral and octahedral configurations demonstrate superior localisation robustness, while planar arrays exhibit limited angular resolution. My simulations reveal that spatial resolution is fundamentally constrained by array geometry and the signal structure, with typical localisation error ranging between 5-10 cm at 0.5 m arm lengths. By providing a flexible, extensible, and user-friendly simulation environment, Array WAH supports task-specific design and deployment of compact, field-deployable localisation systems. It is especially valuable for investigating the acoustic behaviour of free-flying bats under naturalistic conditions, and complements emerging low-power multichannel ultrasonic recorders for field deployment and method validation.
对超声波蝙蝠叫声进行精确的三维定位对于推进行为学和生态学研究至关重要。我提出了一个全面的开源模拟框架——阵列WAH,用于设计、评估和优化适用于生物声学跟踪的麦克风阵列。该工具结合了生物学上逼真的信号生成、频率依赖性传播和先进的到达时间差(TDoA)定位算法,能够精确量化位置和角度精度。该框架支持调频(FM)和恒频(CF)叫声类型,后者是菊头蝠科和蹄蝠科蝙蝠的特征,由于它们的长时间发射,特别容易出现定位误差。一个关键的创新是在叫声发射过程中集成了源运动建模,这引入了基于多普勒的时间扭曲和跨麦克风的相移——这是源定位中一个重要且经常被忽视的误差来源。我在一个体积空间网格上系统地比较了四种阵列几何形状——平面正方形、金字塔形、四面体和八面体。四面体和八面体配置表现出卓越的定位鲁棒性,而平面阵列的角度分辨率有限。我的模拟表明,空间分辨率从根本上受到阵列几何形状和信号结构的限制,在0.5米的臂长下,典型的定位误差在5 - 10厘米之间。通过提供一个灵活、可扩展且用户友好的模拟环境,阵列WAH支持针对特定任务设计和部署紧凑的、可现场部署的定位系统。它对于研究自然条件下自由飞行蝙蝠的声学行为特别有价值,并补充了用于现场部署和方法验证的新兴低功耗多通道超声波记录器。