Chen Hongwu, Wang Huaipeng, Li Chun
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China.
Adv Mater. 2022 Oct;34(43):e2205723. doi: 10.1002/adma.202205723. Epub 2022 Sep 23.
Complete utilization of electrochemically active materials while maintaining the high areal/volumetric packing density is a goal to be achieved in miniaturized supercapacitor devices, which therefore display both high volumetric and areal energy density. Although critical, it is usually challenging to achieve this goal by optimizing the electrode architecture. Dense packing of active materials maximizes the volumetric capacitance but also results in sluggish diffusion of the electrolyte. Structurization of the electrode by forming large pores creates a pathway for electrolyte penetration but reduces the volumetric energy density. Here, densified electrodes with hierarchical porous architecture at the nanoscale are reported, which provide an alternative solution. Worm-like expanded titanium carbide MXene powders are produced in highly viscous reaction media and assembled by mechanical compression. The expanded morphology of the MXene powders translates into a buckling microstructure in the electrodes, resulting in 28.2 ± 4.1% porosity mainly in the form of nanosized pores. At the sub-nanometer scale, the diffusion of electrolytes is enhanced in interlayer space of the bended lattice with pillared intercalants. These hierarchical structural features lead to both high areal and volumetric capacitance (11.4 F cm coupled with 770 F cm ) in hundred-micrometers-thick electrodes, which inspires the design of high-performance electrochemical energy storage devices.
在保持高面/体堆积密度的同时完全利用电化学活性材料是小型化超级电容器器件要实现的目标,因此这类器件兼具高体积和高面积能量密度。尽管至关重要,但通过优化电极结构来实现这一目标通常具有挑战性。活性材料的致密堆积可使体积电容最大化,但也会导致电解质扩散缓慢。通过形成大孔对电极进行结构化处理可创造电解质渗透的通道,但会降低体积能量密度。在此,报道了具有纳米级分级多孔结构的致密电极,这提供了一种替代解决方案。在高粘性反应介质中制备出蠕虫状膨胀碳化钛MXene粉末,并通过机械压缩进行组装。MXene粉末的膨胀形态转化为电极中的屈曲微观结构,导致孔隙率为28.2±4.1%,主要为纳米尺寸的孔隙形式。在亚纳米尺度上,电解质在带有柱状插层剂的弯曲晶格的层间空间中的扩散得到增强。这些分级结构特征使得数百微米厚的电极同时具有高面积电容和体积电容(分别为11.4 F/cm²和770 F/cm³),这为高性能电化学储能器件的设计提供了灵感。