Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
Nat Ecol Evol. 2022 Oct;6(10):1537-1552. doi: 10.1038/s41559-022-01855-3. Epub 2022 Sep 1.
Understanding the mechanisms leading to new traits or additional features in organisms is a fundamental goal of evolutionary biology. We show that HOXDB regulatory changes have been used repeatedly in different fish genera to alter the length and number of the prominent dorsal spines used to classify stickleback species. In Gasterosteus aculeatus (typically 'three-spine sticklebacks'), a variant HOXDB allele is genetically linked to shortening an existing spine and adding an additional spine. In Apeltes quadracus (typically 'four-spine sticklebacks'), a variant HOXDB allele is associated with lengthening a spine and adding an additional spine in natural populations. The variant alleles alter the same non-coding enhancer region in the HOXDB locus but do so by diverse mechanisms, including single-nucleotide polymorphisms, deletions and transposable element insertions. The independent regulatory changes are linked to anterior expansion or contraction of HOXDB expression. We propose that associated changes in spine lengths and numbers are partial identity transformations in a repeating skeletal series that forms major defensive structures in fish. Our findings support the long-standing hypothesis that natural Hox gene variation underlies key patterning changes in wild populations and illustrate how different mutational mechanisms affecting the same region may produce opposite gene expression changes with similar phenotypic outcomes.
理解导致生物体新特征或额外特征的机制是进化生物学的一个基本目标。我们表明,HOXDB 调控变化在不同的鱼类属中被反复使用,以改变用于分类棘鱼物种的显著背刺的长度和数量。在棘鱼属(通常为“三刺棘鱼”)中,一个变体 HOXDB 等位基因与缩短现有刺和添加额外刺在遗传上相关。在 Apeltes quadracus(通常为“四刺棘鱼”)中,变体 HOXDB 等位基因与在自然种群中延长刺和添加额外刺相关。变体等位基因改变了 HOXDB 基因座中的相同非编码增强子区域,但通过不同的机制,包括单核苷酸多态性、缺失和转座子插入。独立的调控变化与 HOXDB 表达的前部扩张或收缩有关。我们提出,与刺长度和数量相关的变化是在形成鱼类主要防御结构的重复骨骼系列中的部分同一性转化。我们的发现支持了一个长期存在的假设,即自然 Hox 基因变异是野生种群中关键模式变化的基础,并说明了影响同一区域的不同突变机制如何产生相似表型结果的相反基因表达变化。