Herbert Amy L, Lee David, McCoy Matthew J, Behrens Veronica C, Wucherpfennig Julia I, Kingsley David M
Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States.
Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, United States.
Evol Lett. 2024 Aug 7;8(6):893-901. doi: 10.1093/evlett/qrae041. eCollection 2024 Dec.
The genetic mechanisms underlying striking axial patterning changes in wild species are still largely unknown. Previous studies have shown that fish, commonly known as fourspine sticklebacks, have evolved multiple different axial patterns in wild populations. Here, we revisit classic locations in Nova Scotia, Canada, where both high-spined and low-spined morphs are particularly common. Using genetic crosses and quantitative trait locus (QTL) mapping, we examine the genetic architecture of wild differences in several axial patterning traits, including the number and length of prominent dorsal spines, the number of underlying median support bones (pterygiophores), and the number and ratio of abdominal and caudal vertebrae along the anterior-posterior body axis. Our studies identify a highly significant QTL on chromosome 6 that controls a substantial fraction of phenotypic variation in multiple dorsal spine and pterygiophore traits (15%-30% variance explained). An additional smaller-effect QTL on chromosome 14 contributes to the lengths of both the last dorsal spine and anal spine (9% variance explained). 1 or no QTL were detected for differences in the numbers of abdominal and caudal vertebrae. The major-effect patterning QTL on chromosome 6 is centered on the gene cluster, where sequence changes in a noncoding axial regulatory enhancer have previously been associated with prominent dorsal spine differences in . The QTL that have the largest effects on dorsal spine number and length traits map to different chromosomes in and , 2 distantly related stickleback genera. However, in both genera, the major-effect QTL for prominent skeletal changes in wild populations maps to linked clusters of powerful developmental control genes. This study, therefore, bolsters the body of evidence that regulatory changes in developmental gene clusters provide a common genetic mechanism for evolving major morphological changes in natural species.
野生物种显著的轴向模式变化背后的遗传机制在很大程度上仍然未知。先前的研究表明,通常被称为四棘刺鱼的鱼类在野生种群中已经进化出多种不同的轴向模式。在这里,我们重新考察了加拿大新斯科舍省的经典地点,在那里高棘和低棘形态都特别常见。通过遗传杂交和数量性状基因座(QTL)定位,我们研究了几种轴向模式特征的野生差异的遗传结构,包括突出背棘的数量和长度、下面的中间支撑骨(鳍担骨)的数量,以及沿前后身体轴的腹椎和尾椎的数量和比例。我们的研究在6号染色体上鉴定出一个高度显著的QTL,它控制了多个背棘和鳍担骨性状中相当一部分的表型变异(约15%-30%的变异解释率)。14号染色体上另一个效应较小的QTL对最后一个背棘和臀棘的长度有贡献(约9%的变异解释率)。未检测到腹椎和尾椎数量差异的QTL(检测到1个或未检测到QTL)。6号染色体上的主要效应模式QTL集中在基因簇上,之前在[未提及的相关物种]中,一个非编码轴向调节增强子中的序列变化与突出的背棘差异有关。对背棘数量和长度性状影响最大的QTL在[未提及的两个相关物种]中映射到不同的染色体上,这两个物种是刺鱼属中关系较远的两个属。然而,在这两个属中,野生种群中显著骨骼变化的主要效应QTL都映射到强大的发育控制基因的连锁簇上。因此,这项研究支持了这样的证据体系,即发育基因簇中的调控变化为自然物种中主要形态变化的进化提供了一种共同的遗传机制。