Tang Jau, Tang Qiang, Hu Z B
Institute of Technological Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
Sci Rep. 2022 Sep 1;12(1):14881. doi: 10.1038/s41598-022-19344-9.
We present a flip-flop dual-component model to treat quantum dynamics of relativistic particles with a rest mass and investigate the matter waves' phase and amplitude modulations due to Heisenberg's uncertainty principle. Their matter waves behave like a traveling Gaussian-shaped wave packet accompanied by a guiding pilot wave, and the phase modulations result in mass oscillations. These effects are more prominent for light-weighted elementary particles, such as neutrinos and electrons. This mechanism is solely due to the uncertainty principle and has nothing to do with the flavor-mixing of neutrinos. Simulations using neutrinos and electrons are presented, which indicate an oscillation period on the order of ps. This study primarily focuses on the predicted mass oscillations induced by the uncertainty principle. A slit-type interference experiment using neutrinos and electrons from reactors is proposed to test the predicted behaviors.
我们提出了一种双稳态双组分模型来处理具有静止质量的相对论粒子的量子动力学,并研究由于海森堡不确定性原理引起的物质波的相位和振幅调制。它们的物质波表现得像一个伴随引导导波的行进高斯形状波包,相位调制导致质量振荡。这些效应对于轻质量的基本粒子(如中微子和电子)更为显著。这种机制完全归因于不确定性原理,与中微子的味混合无关。给出了使用中微子和电子的模拟结果,表明振荡周期约为皮秒量级。本研究主要关注由不确定性原理预测的质量振荡。提出了一个使用来自反应堆的中微子和电子的狭缝型干涉实验来测试预测行为。