Suppr超能文献

评估肯尼亚内罗毕大学上卡贝特校区咖啡农场选定土壤属性的空间变异性。

Assessing spatial variability of selected soil properties in Upper Kabete Campus coffee farm, University of Nairobi, Kenya.

作者信息

Mwendwa Samuel M, Mbuvi Joseph P, Kironchi Geoffrey, Gachene Charles K K

机构信息

Department of Land Resource Management and Agricultural Technology, College of Agriculture and Veterinary Sciences, University of Nairobi, P.O. Box 29053-00625, Kangemi, Nairobi, Kenya.

出版信息

Heliyon. 2022 Aug 11;8(8):e10190. doi: 10.1016/j.heliyon.2022.e10190. eCollection 2022 Aug.

Abstract

This study aimed to evaluate spatial variability of selected soil parameters as a smart agricultural technology guide to precise fertilizer application. A farm designated as Field 3 which is under Arabica coffee within a bigger Soil Mapping Unit (SMU) was selected for a more detailed soil observation at a scale of 1:5000. Soil samples were taken at depths of 0-15 and 15-30 cm across 20 sample locations in grids and selected properties analysed in the laboratory. Kriging interpolation method was used to estimate the accuracy of interpolation through cross-validation of the top soil parameters. In 0 to 15 and 15-30 cm depth, soil reaction, percentage organic carbon and percent nitrogen showed low variability of 5.1% and 5.8%, 10.4% and 12.7%, 14.5% and 17.6% respectively. Phosphorus was deficient in both depths and showed moderate variability of 36.2% and 42.3% in 0-15 and 15-30 cm respectively. Calcium and Magnesium ranged from sufficient to rich and showed moderate and low variability in top and bottom depths, respectively. All micronutrients were sufficient in the soil. The soils were classified as Mollic Nitisols. Results showed that soil parameters varied spatially within the field therefore, there is need for variable input application depending on the levels of these elements and purchasing of fertilizer blends that are suitable for nutrient deficiencies. Precision agriculture is highly recommended in the field to capitalize on soil heterogeneity.

摘要

本研究旨在评估选定土壤参数的空间变异性,为精准施肥提供智能农业技术指导。在一个较大的土壤制图单元(SMU)内,选取了一块种植阿拉比卡咖啡的指定为3号田的农场,以1:5000的比例进行更详细的土壤观测。在20个网格状采样点采集了0 - 15厘米和15 - 30厘米深度的土壤样本,并在实验室分析了选定的特性。采用克里金插值法通过对表层土壤参数的交叉验证来估计插值精度。在0至15厘米和15 - 30厘米深度,土壤反应、有机碳百分比和氮百分比的变异系数较低,分别为5.1%和5.8%、10.4%和12.7%、14.5%和17.6%。两个深度的磷均缺乏,在0 - 15厘米和15 - 30厘米深度的变异系数分别为36.2%和42.3%,属中等变异。钙和镁含量从充足到丰富,分别在表层和底层深度表现出中等和低变异。土壤中所有微量营养元素均充足。这些土壤被归类为暗沃变性土。结果表明,田间土壤参数存在空间变异,因此需要根据这些元素的含量进行变量投入施肥,并购买适合养分缺乏情况的肥料配方。强烈建议在该田间采用精准农业,以利用土壤异质性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验