Kousar Robina, Lone Aabid H, Shah Zahoor A, Dar Eajaz Ahmad, Mir Mohd Salim, Alkeridis Lamya Ahmed, Al-Shuraym Laila A, Ganie Mumtaz A, Bhat Javid A, Alshehri Mohammed Ali, Sayed Samy, Shukry Mustafa, Wani Owais A, Jehangir Intikhab A, Wani Faheem J, Baba Zahoor A, Sofi Najeeb R, Mubarak T, Hussain Ashaq, Summuna Baby
Division of Soil Science, Faculty of Agriculture, SKUAST-Kashmir, Srinagar, India.
Mountain Research Centre for Field Crops- Khudwani, SKUAST-Kashmir, Srinagar, India.
Sci Rep. 2025 Jun 4;15(1):19705. doi: 10.1038/s41598-025-03695-0.
The appraisal of spatial variability of soil properties is crucial for gaining a comprehensive understanding of the intricate relationships between soil properties and for establishing effective management practices for soil resource utilization. Despite extensive research on regional soil variability, farm-scale assessments in temperate mountainous agro-ecosystems remain scarce, limiting precision soil management strategies. This study aimed to evaluate spatial variability and generate spatial distribution maps. The study area at 75.0916°E and 33.7237°N was the Research Farm of Mountain Research Centre for Field Crops (MRCFC) - Khudwani, characterized by temperate climate conditions. Soil samples were randomly collected from eighty-nine (89) sites across the whole research farm at a depth of 0-15 cm using a global positioning system (GPS). Then, the samples were processed and tested for various physical and chemical properties. Descriptive analysis and data transformation were performed using the SPSS package. The Shapiro-Wilk test assessed the normality of parameters. ArcGIS 10.8 software was used to conduct geostatistical analysis. The physical properties revealed a predominant silty clay loam texture. The soil bulk density, particle density, and porosity distribution were 2.05 to 2.76 g cm⁻³, 38.32-56.93%, and 1.12 to 1.38 g cm⁻³, respectively. The chemical properties analysis revealed soil pH (5.30-8), EC (0.01-0.18 dS m - 1), and SOC (0.52-1.21%) and concentrations of soil available nutrients (AN 187.80-455.83 kg ha - 1, AP 12.04-33.07 kg ha - 1, AK 77.57-195.87 kg ha - 1, AS 8.30-15.90 mg kg - 1, Ex. Ca 7.10-12.40 cmol(+)kg⁻¹, Ex. Mg 1.80-3.90 cmol(+)kg⁻¹, AMn 3.31-27.2 mg kg - 1, AFe 4.64-19.8 mg kg - 1, ACu 0.69-1.88 mg kg - 1 and AZn 0.27-1.64 mg kg - 1). CV values indicated very high variation for EC, K, Cu; high variation for OC, P, Fe, Mn, and Zn; medium for pH, N, S, Ex. Ca and Ex. Mg, while physical parameters indicated low variability in the examined soil. Geostatistical analysis revealed strong (bulk density, porosity, pH, EC, OC, P, K, Ex. Ca, Fe, Mn, Cu, and Zn), moderate (particle density, N and S), and weak (Ex. Mg) spatial dependence for soil parameters with the best-fit models being Spherical for EC, OC, N, P, S, Ex. Ca, Ex. Mg, Cu, and Zn, Gaussian for bulk density, particle density, porosity, pH, K, and Mn, while Exponential for Fe. These findings indicate that historical land-use patterns and long-term fertilization practices have led to significant spatial heterogeneity, underscoring the need for location-specific nutrient management. The generated spatial distribution maps offer practical tools for optimizing experimental site selection and guiding precision agriculture strategies at the research station. The significant variability in soil properties and spatial distribution primarily arises from factors such as land use type, fertilization practices, and historical management. The spatial distribution maps of soil properties could be used for location-specific nutrient management strategies and for identifying the optimum locations for setting up specialized experiments on the research farm.
评估土壤性质的空间变异性对于全面理解土壤性质之间的复杂关系以及建立有效的土壤资源利用管理实践至关重要。尽管对区域土壤变异性进行了广泛研究,但温带山区农业生态系统的农场尺度评估仍然稀缺,限制了精准土壤管理策略。本研究旨在评估空间变异性并生成空间分布图。研究区域位于东经75.0916°、北纬33.7237°,是山地大田作物研究中心(MRCFC) - 库德瓦尼的研究农场,其特点是温带气候条件。使用全球定位系统(GPS)在整个研究农场的89个地点随机采集0 - 15厘米深度的土壤样本。然后,对样本进行处理并测试各种物理和化学性质。使用SPSS软件包进行描述性分析和数据转换。Shapiro-Wilk检验评估参数的正态性。使用ArcGIS 10.8软件进行地统计分析。物理性质显示主要为粉质粘壤土质地。土壤容重、颗粒密度和孔隙度分布分别为2.05至2.76克/立方厘米、38.32 - 56.93%和1.12至1.38克/立方厘米。化学性质分析显示土壤pH值(5.30 - 8)、电导率(EC,0.01 - 0.18 dS/m)、有机碳(SOC,0.52 - 1.21%)以及土壤有效养分浓度(碱解氮187.80 - 455.83千克/公顷、有效磷12.04 - 33.07千克/公顷、速效钾77.57 - 195.87千克/公顷、有效硫8.30 - 15.90毫克/千克、交换性钙7.10 - 12.40厘摩尔(+)/千克、交换性镁1.80 - 3.90厘摩尔(+)/千克、有效锰3.31 - 27.2毫克/千克、有效铁4.64 - 19.8毫克/千克、有效铜0.69 - 1.88毫克/千克和有效锌0.27 - 1.64毫克/千克)。变异系数(CV)值表明电导率、钾、铜变异非常高;有机碳、磷、铁、锰和锌变异高;pH值、氮、硫、交换性钙和交换性镁变异中等,而物理参数表明所研究土壤的变异性较低。地统计分析显示土壤参数的空间依赖性强(容重、孔隙度、pH值、电导率、有机碳、磷、钾、交换性钙、铁、锰、铜和锌)、中等(颗粒密度、氮和硫)和弱(交换性镁),最佳拟合模型对于电导率、有机碳、氮、磷、硫、交换性钙、交换性镁、铜和锌为球状模型,对于容重、颗粒密度、孔隙度、pH值、钾和锰为高斯模型,而对于铁为指数模型。这些发现表明,历史土地利用模式和长期施肥实践导致了显著的空间异质性,强调了针对特定地点进行养分管理的必要性。生成的空间分布图为优化实验地点选择和指导研究站的精准农业策略提供了实用工具。土壤性质和空间分布的显著变异性主要源于土地利用类型、施肥实践和历史管理等因素。土壤性质的空间分布图可用于针对特定地点的养分管理策略以及确定在研究农场设立专门实验的最佳位置。