Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina.
Centro de Estudios Clínicos SAGA, CEC SAGA, Santiago de Chile 8320000, Chile.
World J Gastroenterol. 2022 Jul 14;28(26):3177-3200. doi: 10.3748/wjg.v28.i26.3177.
Parathyroid hormone-related peptide (PTHrP) plays a key role in the development and progression of many tumors. We found that in colorectal cancer (CRC) HCT116 cells, the binding of PTHrP to its receptor PTHR type 1 (PTHR1) activates events associated with an aggressive phenotype. In HCT116 cell xenografts, PTHrP modulates the expression of molecular markers linked to tumor progression. Empirical evidence suggests that the Met receptor is involved in the development and evolution of CRC. Based on these data, we hypothesized that the signaling pathway trigged by PTHrP could be involved in the transactivation of Met and consequently in the aggressive behavior of CRC cells.
To elucidate the relationship among PTHR1, PTHrP, and Met in CRC models.
For assays, HCT116 and Caco-2 cells derived from human CRC were incubated in the absence or presence of PTHrP (1-34) (10 M). Where indicated, cells were pre-incubated with specific kinase inhibitors or dimethylsulfoxide, the vehicle of the inhibitors. The protein levels were evaluated by Western blot technique. Real-time polymerase chain reaction (RT-qPCR) was carried out to determine the changes in gene expression. Wound healing assay and morphological monitoring were performed to evaluate cell migration and changes related to the epithelial-mesenchymal transition (EMT), respectively. The number of viable HCT116 cells was counted by trypan blue dye exclusion test to evaluate the effects of irinotecan (CPT-11), oxaliplatin (OXA), or doxorubicin (DOXO) with or without PTHrP. For tests, HCT116 cell xenografts on 6-wk-old male N:NIH (S)_nu mice received daily intratumoral injections of PTHrP (40 μg/kg) in 100 μL phosphate-buffered saline (PBS) or the vehicle (PBS) as a control during 20 d. Humanitarian slaughter was carried out and the tumors were removed, weighed, and fixed in a 4% formaldehyde solution for subsequent treatment by immunoassays. To evaluate the expression of molecular markers in human tumor samples, we studied 23 specimens obtained from CRC patients which were treated at the Hospital Interzonal de Graves y Agudos Dr. José Penna (Bahía Blanca, Buenos Aires, Argentina) and the Hospital Provincial de Neuquén (Neuquén, Neuquén, Argentina) from January 1990 to December 2007. Seven cases with normal colorectal tissues were assigned to the control group. Tumor tissue samples and clinical histories of patients were analyzed. Paraffin-embedded blocks from primary tumors were reviewed by hematoxylin-eosin staining technique; subsequently, representative histological samples were selected from each patient. From each paraffin block, tumor sections were stained for immunohistochemical detection. The statistical significance of differences was analyzed using proper statistical analysis. The results were considered statistically significant at < 0.05.
By Western blot analysis and using total Met antibody, we found that PTHrP regulated Met expression in HCT116 cells but not in Caco-2 cells. In HCT116 cells, Met protein levels increased at 30 min ( < 0.01) and at 20 h ( < 0.01) whereas the levels diminished at 3 min ( < 0.05), 10 min ( < 0.01), and 1 h to 5 h ( < 0.01) of PTHrP treatment. Using an active Met antibody, we found that where the protein levels of total Met decreased (3 min, 10 min, and 60 min of PTHrP exposure), the status of phosphorylated/activated Met increased ( < 0.01) at the same time, suggesting that Met undergoes proteasomal degradation after its phosphorylation/activation by PTHrP. The increment of its protein level after these decreases (at 30 min and 20 h) suggests a modulation of Met expression by PTHrP in order to improve Met levels and this idea is supported by our observation that the cytokine increased mRNA levels at least at 15 min in HCT116 cells as revealed by RT-qPCR analysis ( < 0.05). We then proceeded to evaluate the signaling pathways that mediate the phosphorylation/ activation of Met induced by PTHrP in HCT116 cells. By Western blot technique, we observed that PP1, a specific inhibitor of the activation of the proto-oncogene protein tyrosine kinase Src, blocked the effect of PTHrP on Met phosphorylation ( < 0.05). Furthermore, the selective inhibition of the ERK 1/2 mitogen-activated protein kinase (ERK 1/2 MAPK) using PD98059 and the p38 MAPK using SB203580 diminished the effect of PTHrP on Met phosphorylation/activation ( < 0.05). Using SU11274, the specific inhibitor of Met activation, and trypan blue dye exclusion test, Western blot, wound healing assay, and morphological analysis with a microscope, we observed the reversal of cell events induced by PTHrP such as cell proliferation ( < 0.05), migration ( < 0.05), and the EMT program ( < 0.01) in HCT116 cells. Also, PTHrP favored the chemoresistance to CPT-11 ( < 0.001), OXA ( < 0.01), and DOXO ( < 0.01) through the Met pathway. Taken together, these findings suggest that Met activated by PTHrP participates in events associated with the aggressive phenotype of CRC cells. By immunohistochemical analysis, we found that PTHrP in HCT116 cell xenografts enhanced the protein expression of Met (0.190 ± 0.014) compared to tumors from control mice (0.110 ± 0.012; < 0.05) and of its own receptor (2.27 ± 0.20) compared to tumors from control mice (1.98 ± 0.14; < 0.01). Finally, assuming that the changes in the expression of PTHrP and its receptor are directly correlated, we investigated the expression of both Met and PTHR1 in biopsies of CRC patients by immunohistochemical analysis. Comparing histologically differentiated tumors with respect to those less differentiated, we found that the labeling intensity for Met and PTHR1 increased and diminished in a gradual manner, respectively ( < 0.05).
PTHrP acts through the Met pathway in CRC cells and regulates Met expression in a CRC animal model. More basic and clinical studies are needed to further evaluate the PTHrP/Met relationship.
甲状旁腺激素相关肽(PTHrP)在许多肿瘤的发生和发展中起着关键作用。我们发现,在结直肠癌细胞(CRC)HCT116 中,PTHrP 与其受体甲状旁腺激素受体 1 型(PTHR1)的结合激活了与侵袭表型相关的事件。在 HCT116 细胞异种移植中,PTHrP 调节与肿瘤进展相关的分子标志物的表达。经验证据表明,Met 受体参与 CRC 的发生和演变。基于这些数据,我们假设 PTHrP 触发的信号通路可能参与 Met 的反式激活,从而影响 CRC 细胞的侵袭行为。
阐明 CRC 模型中 PTHR1、PTHrP 和 Met 之间的关系。
为了进行实验,我们用 PTHrP(1-34)(10 μM)孵育人 CRC 来源的 HCT116 和 Caco-2 细胞,在有或没有 PTHrP 的情况下进行实验。在有或没有特定激酶抑制剂或二甲亚砜(抑制剂的溶剂)预处理的情况下,检测细胞的蛋白水平。通过实时聚合酶链反应(RT-qPCR)检测基因表达的变化。进行划痕愈合实验和形态学监测,分别评估细胞迁移和上皮-间充质转化(EMT)相关的变化。通过台盼蓝染料排斥试验计数存活的 HCT116 细胞,以评估伊立替康(CPT-11)、奥沙利铂(OXA)或多柔比星(DOXO)与 PTHrP 联合应用的效果。为了进行实验,我们给 6 周龄雄性 N:NIH(S)_nu 小鼠的 HCT116 细胞异种移植瘤每天瘤内注射 40 μg/kg 的 PTHrP(40 μg/kg),用 100 μL 的磷酸盐缓冲盐水(PBS)或 PBS 作为对照进行治疗,持续 20 天。进行人道安乐死,取出肿瘤,称重,并在福尔马林溶液中固定,用于随后的免疫分析。为了评估人肿瘤样本中分子标志物的表达,我们研究了 23 例 CRC 患者的肿瘤样本,这些患者分别来自阿根廷 Bahía Blanca 的 Hospital Interzonal de Graves y Agudos Dr. José Penna 和阿根廷 Neuquén 的 Hospital Provincial de Neuquén,时间从 1990 年 1 月至 2007 年 12 月。我们将 7 例正常结直肠组织的病例分配到对照组。分析肿瘤组织样本和患者的临床病史。对原发性肿瘤的石蜡包埋块进行苏木精-伊红染色技术检查;随后,从每位患者中选择具有代表性的组织样本。从每个石蜡块中,用免疫组织化学检测方法检测肿瘤组织的染色。使用适当的统计分析方法分析差异的统计学意义。结果被认为具有统计学意义,当 < 0.05。
通过 Western blot 分析和使用总 Met 抗体,我们发现 PTHrP 调节 HCT116 细胞中的 Met 表达,但不调节 Caco-2 细胞。在 HCT116 细胞中,Met 蛋白水平在 30 分钟( < 0.01)和 20 小时( < 0.01)时增加,而在 3 分钟( < 0.05)、10 分钟( < 0.01)和 1 小时至 5 小时( < 0.01)时降低。使用活性 Met 抗体,我们发现,当总 Met 蛋白水平下降(PTHrP 暴露 3 分钟、10 分钟和 60 分钟)时,磷酸化/激活的 Met 状态增加( < 0.01),这表明 Met 在被 PTHrP 磷酸化/激活后发生了蛋白酶体降解。在这些下降之后(在 30 分钟和 20 小时)其蛋白水平的增加表明 PTHrP 通过调节 Met 表达来改善 Met 水平,这一观点得到了我们的观察结果的支持,即细胞因子通过 RT-qPCR 分析在 HCT116 细胞中至少在 15 分钟内增加了 mRNA 水平( < 0.05)。然后,我们继续评估介导 PTHrP 在 HCT116 细胞中诱导的 Met 磷酸化/激活的信号通路。通过 Western blot 技术,我们观察到,特异性激活原癌基因蛋白酪氨酸激酶Src 的抑制剂 PP1,阻断了 PTHrP 对 Met 磷酸化的影响( < 0.05)。此外,使用 PD98059 和 SB203580 特异性抑制细胞外信号调节激酶 1/2(ERK 1/2 MAPK)和 p38 MAPK,减弱了 PTHrP 对 Met 磷酸化/激活的影响( < 0.05)。使用特异性激活 Met 的抑制剂 SU11274 和台盼蓝染料排斥试验、Western blot、划痕愈合试验和显微镜下的形态分析,我们观察到 PTHrP 诱导的细胞事件发生逆转,如 HCT116 细胞的增殖( < 0.05)、迁移( < 0.05)和 EMT 程序( < 0.01)。此外,PTHrP 通过 Met 途径促进 CRC 细胞对 CPT-11( < 0.001)、OXA( < 0.01)和 DOXO( < 0.01)的化学耐药性。总之,这些发现表明,PTHrP 激活的 Met 参与了 CRC 细胞侵袭表型相关的事件。通过免疫组织化学分析,我们发现 PTHrP 在 HCT116 细胞异种移植瘤中增强了 Met(0.190 ± 0.014)的蛋白表达,与对照组小鼠的肿瘤(0.110 ± 0.012; < 0.05)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)相比,与对照组小鼠的肿瘤(0.110 ± 0.012)