Suppr超能文献

使用贝叶斯列线图预测易患抑郁症的韩国青少年:一项基于社区的横断面研究。

Predicting South Korea adolescents vulnerable to depressive disorder using Bayesian nomogram: A community-based cross-sectional study.

作者信息

Byeon Haewon

机构信息

Department of Medical Big Data, College of AI Convergence, Inje University, Gimhae 50834, Gyeonsangnamdo, South Korea.

出版信息

World J Psychiatry. 2022 Jul 19;12(7):915-928. doi: 10.5498/wjp.v12.i7.915.

Abstract

BACKGROUND

Although South Korea has developed and carried out evidence-based interventions and prevention programs to prevent depressive disorder in adolescents, the number of adolescents with depressive disorder has increased every year for the past 10 years.

AIM

To develop a nomogram based on a naïve Bayesian algorithm by using epidemiological data on adolescents in South Korea and present baseline data for screening depressive disorder in adolescents.

METHODS

Epidemiological data from 2438 subjects who completed a brief symptom inventory questionnaire were used to develop a model based on a Bayesian nomogram for predicting depressive disorder in adolescents.

RESULTS

Physical symptoms, aggression, social withdrawal, attention, satisfaction with school life, mean sleeping hours, and conversation time with parents were influential factors on depressive disorder in adolescents. Among them, physical symptoms were the most influential.

CONCLUSION

Active intervention by periodically checking the emotional state of adolescents and offering individual counseling and in-depth psychological examinations when necessary are required to mitigate depressive disorder in adolescents.

摘要

背景

尽管韩国已制定并实施了基于证据的干预措施和预防计划以预防青少年抑郁症,但在过去10年中,患有抑郁症的青少年数量每年都在增加。

目的

利用韩国青少年的流行病学数据,开发基于朴素贝叶斯算法的列线图,并提供青少年抑郁症筛查的基线数据。

方法

来自2438名完成简短症状清单问卷的受试者的流行病学数据被用于开发基于贝叶斯列线图的模型,以预测青少年抑郁症。

结果

身体症状、攻击性、社交退缩、注意力、对学校生活的满意度、平均睡眠时间以及与父母的交谈时间是青少年抑郁症的影响因素。其中,身体症状影响最大。

结论

需要通过定期检查青少年的情绪状态并在必要时提供个别咨询和深入心理检查来进行积极干预,以减轻青少年的抑郁症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a8a/9331454/9ec8254208e2/WJP-12-915-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验