Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
Plant J. 2022 Nov;112(3):603-621. doi: 10.1111/tpj.15965. Epub 2022 Sep 22.
Characterizing photosynthetic productivity is necessary to understand the ecological contributions and biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these investigations typically do not consider the metabolic network downstream of light harvesting. By contrast, genome-scale metabolic models capture species-specific metabolic capabilities but have yet to incorporate the rapid regulation of the light harvesting apparatus. Here, we combine chlorophyll fluorescence parameters defining photosynthetic and non-photosynthetic yield of absorbed light energy with a metabolic model of the pennate diatom Phaeodactylum tricornutum. This integration increases the model predictive accuracy regarding growth rate, intracellular oxygen production and consumption, and metabolic pathway usage. Through the quantification of excess electron transport, we uncover the sequential activation of non-radiative energy dissipation processes, cross-compartment electron shuttling, and non-photochemical quenching as the rapid photoacclimation strategy in P. tricornutum. Interestingly, the photon absorption thresholds that trigger the transition between these mechanisms were consistent at low and high incident photon fluxes. We use this understanding to explore engineering strategies for rerouting cellular resources and excess light energy towards bioproducts in silico. Overall, we present a methodology for incorporating a common, informative data type into computational models of light-driven metabolism and show its utilization within the design-build-test-learn cycle for engineering of photosynthetic organisms.
对光合作用生产力进行特征描述对于理解植物、藻类和蓝细菌的生态贡献和生物技术潜力是必要的。长期以来,光捕获效率和光生理学一直通过叶绿素荧光动力学的测量来进行特征描述。然而,这些研究通常不考虑光捕获后下游的代谢网络。相比之下,基于基因组规模的代谢模型可以捕捉到物种特异性的代谢能力,但尚未将光捕获装置的快速调控纳入其中。在这里,我们将定义吸收光能的光合作用和非光合作用产量的叶绿素荧光参数与舟形藻的代谢模型相结合。这种组合提高了模型对生长速率、细胞内氧气产生和消耗以及代谢途径使用的预测准确性。通过对过剩电子传递的量化,我们揭示了非辐射能量耗散过程、跨区室电子穿梭和非光化学猝灭的顺序激活,作为舟形藻快速光驯化策略。有趣的是,触发这些机制之间转变的光子吸收阈值在低和高光入射光子通量下是一致的。我们利用这一认识来探索在计算机中重新分配细胞资源和过剩光能以生产生物制品的工程策略。总的来说,我们提出了一种将常见的、信息丰富的数据类型纳入光驱动代谢计算模型的方法,并展示了其在光合作用生物的工程设计-构建-测试-学习循环中的利用。